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ABSTRACT

The determination of stellar atmospheric parameters from spectra suffers the so-called curse-
of-dimensionality problem, which is related to the higher number of input variables (flux
values) compared to the number of spectra available to fit a regression model (this collection
of examples is known as the training set). This work evaluates the utility of several techniques
for alleviating this problem in regression tasks where the objective is to estimate the effective
temperature (7.f), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron
ratio ([«/Fe]). The goal of the techniques analysed here is to achieve data compression by
representing the spectra with a number of variables much lower than the initially available set
of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-
8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent
component analysis (ICA) performs better than the rest of techniques evaluated for all SNR
regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression
model (training set) to the SNR of the spectra for which the atmospheric parameters are needed
(evaluation set). Within the conditions of our experiments, we conclude that at most only two
such regression models are needed (in the case of regression models for effective temperatures,
those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also
compare the prediction accuracy of effective temperature regression models for increasing

values of the training grid density and the same compression techniques.

Key words: methods: data analysis — methods: statistical — stars: fundamental parameters.

1 INTRODUCTION

The rapid evolution of astronomical instrumentation and the imple-
mentation of extensive surveys have permitted the acquisition of
vast amounts of spectral data. The reduction and management of
large spectral data bases collected by large-area or all-sky sur-
veys like Gaia/Gaia—ESO (Jordi et al. 2006; Gilmore et al. 2012),
RAdial Velocity Experiment (Steinmetz et al. 2006) or APOGEE
(Majewski et al. 2015) require the use of automatic techniques
for the consistent, homogeneous and efficient extraction of physi-
cal parameters from spectra . The availability of these huge data
bases opens new possibilities to better understand the stellar,
Galactic and extragalactic astrophysics. Of special importance
is the determination of intrinsic stellar physical parameters,
such as effective temperature (7.g), surface gravity (log g),
metallicity ((M/H]) and alpha-to-iron ratio ([«/Fe]). However, the
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difficulty that atmospheric parameter estimation poses comes from
the inherent size and dimensionality of the data.

In the following, we will refer to the spectra used to infer the
aforementioned physical parameters as data. Each spectrum is a
high-dimensional array that contains flux values over some inter-
val of wavelength. These flux values can come from spectrograph
measurements (observed spectrum) or from results of a spectra syn-
thesis code (simulated or synthetic spectrum). We will assume that
all spectra in a given regression application contain flux values at
the same wavelengths. In general, the number of fluxes available in
a spectrum is very large, from several hundreds to thousands. Since
these are the values we will use to infer the physical parameters, we
will refer to them as predictive variables or simply variables. Hence,
the input data used to infer the physical parameter of a given star
are very high dimensional. We can think of the regression process
as a module that takes as input the observed or simulated spectrum
and produces as output an estimate of the stellar physical param-
eters. The input space is the space of potential spectra (a space of
high dimensionality) where each spectrum is specified by the input
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variables (the flux values). We will sometimes refer to individual
spectra as instances, cases or examples in this input space.

In order to construct regression models that infer physical pa-
rameters from input spectra, we will need a collection of examples
with well-known physical parameters. This collection of examples
is known as the training set. The training set, in our work, will be a
collection of stellar spectra with attached physical parameters.

In general, the number of flux values in a single spectrum (the
dimensionality of the input space) is larger than or comparable to the
number of example spectra in the training data set. Thus, regression
from stellar spectra suffers the so-called curse of dimensionality.

The curse of dimensionality (Bellman 1961) relates to the prob-
lem caused by the exponential increase in volume associated with
adding extra dimensions to the input space of predictive variables.
When the number of examples in the training set is finite and fixed,
the density of data instances (examples) decreases exponentially as
the dimensionality of the input space increases. A classical example
often described to illustrate this problem would consist (if translated
to the domain of this work) of predicting the physical parameters of
a given star by averaging the physical parameters of the most similar
spectra (nearest neighbour) in the set of training examples. Let us
assume, just for the sake of clarity, that our predictive variables are
rescaled between 0 and 1. If we only used two fluxes, we would only
need 121 spectra distributed uniformly in the 2D plane, to ensure
that the nearest neighbour is at an expected Euclidean distance of
4/0.052 + 0.05%2 = 0.07. If our spectra consist of three flux values,
then the same 121 example spectra would only ensure an average
minimum distance of 0.17 if (again) distributed uniformly in the
unit cube. In 10 dimensions, the average minimum distance would
be 1.76 (recall that we have assumed the predictive variables, that is
to say, the flux values) to be scaled between 0 and 1. This distance
is more than half the maximum distance in the unit ten-dimensional
cube. And we would need 33761 million examples to recover the
minimum distance of 0.14. In other words, the nearest neighbour
is further and further away as the dimensionality of the input space
increases: the available data become sparse. Because this sparsity
is problematic for any method that requires statistical significance,
the amount of data instances needed to support the result often
grows exponentially with the dimensionality in order to obtain a
statistically sound and reliable outcome.

Furthermore, typical spectra obtained in many surveys do not reg-
ularly reach the high signal-to-noise ratios (SNRs) — about 100 or
greater — needed to obtain robust estimates, which increases the dif-
ficulty to accurately estimate the physical parameters of spectra. In
summary, stellar spectra are high-dimensional noisy vectors of real
numbers and thus, regression models must be both computationally
efficient and robust to noise.

There are several ways to alleviate this so-called curse of dimen-
sionality. It is evident that not all wavelength bins in an observed
spectrum carry the same amount of information about the physical
parameters of the stellar atmosphere. One way to reduce the di-
mensionality of the space of predictive variables is to concentrate
on certain wavelength ranges that contain spectral lines that are
sensitive to changes in the physical parameters. Before large-scale
spectroscopic surveys and the fast computers needed to analyse
them became available, astronomers derived physical parameters
by interactively synthesizing spectra until a subjective best fit of
the observed spectrum in certain spectral lines was found. But the
number of spectra made available to the community in the past
decades has made this manual and subjective (thus irreproducible)
fitting procedure impractical. Automatic regression techniques have
therefore become a necessity.

Compression techniques for spectral analysis
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The next step consisted of using derived features of the spec-
trum such as fluxes, flux ratios or equivalent widths to infer the
parameters via multivariate regression techniques (see Allende
Prieto et al. 2006; Bruntt et al. 2010; Rojas-Ayala et al. 2010, 2012;
or Mishenina et al. 2006). That way, we significantly reduce the
full spectrum to a much smaller number of predictive variables,
at the expense of introducing a feature extraction process: defin-
ing a continuum level and normalizing the observed spectrum in
the wavelength region that contains the sensitive spectral feature.
The normalization process effectively consists of dividing two ran-
dom variables: the observed flux and the estimated continuum level.
The simplest hypothesis consists of assuming that both quantities
are Gaussian distributed. Under these conditions, the normalized
spectrum will be a collection of random variables (one per wave-
length) each one distributed according to the ratio distribution (see
e.g. Geary 1930; Marsaglia 1965). Even in the best case that the
continuum flux is Gaussian distributed around a value significantly
different from zero, the ratio distribution is asymmetric (thus sys-
tematically biasing the result) and has a heavy right tail (meaning
that values significantly larger than the mode of the distribution
can occur with non-negligible probabilities). In the cases of low
signal-to-noise spectra, the situation can be catastrophic.

The potential dangers associated with the feature extraction in
restricted wavelength ranges via continuum normalization can be
mitigated by projecting the observed spectra on to bases of func-
tion spaces such as in the wavelet or Fourier decompositions (see
Manteiga et al. 2010; Lu & Li 2015; or Li et al. 2015, for exam-
ples of the two approaches). In essence, the goal is to change the
representation of the spectra, originally involving a large number
of variables (flux values), into a low-dimensional description using
only a small number of variables (dimensions). The new representa-
tion should preserve essentially all of the useful information within
the high-dimensional space. Thus, by retaining only the most sig-
nificant variables (dimensions) to represent the spectra, we achieve
a data compression that can be of great benefit for estimating at-
mospheric parameters as it reduces the dimensionality of the space
required to describe the data.

The most popular data compression technique applied to stellar
spectra is principal component analysis (PCA). It has been widely
applied in spectral classification combined with artificial neural net-
works (ANNSs; Singh, Gulati & Gupta 1998) or support vector ma-
chines (SVMs; Re Fiorentin et al. 2008a). For continuum emission,
PCA has a proven record in representing the variation in the spec-
tral properties of galaxies. However, it does not perform well when
reconstructing high-frequency structure within a spectrum (Vander-
plas & Connolly 2009). To overcome this difficulty, other methods
have been used in the spectral feature extraction procedure. Locally
linear embedding (LLE; Roweis & Saul 2000) and isometric fea-
ture map (Isomap; Tenenbaum, de Silva & Langford 2000) are two
widely used nonlinear data compression techniques. Some studies
found that LLE is efficient in classifying galaxy spectra (Vanderplas
& Connolly 2009) and stellar spectra (Daniel et al. 2011). Other au-
thors concluded that Isomap performs better than PCA, except on
spectra with low SNR (between 5 and 10; Bu, Chen & Pan 2014).

A detailed study of data compression techniques has to include
the analysis of their stability properties against noise. In order to
improve the overall generalization performance of the atmospheric
parameters estimators, experience shows that it is advantageous
to match the noise properties of the synthetic training example to
that of the real observation because it acts as a regularizer in the
training phase (Re Fiorentin et al. 2008b). The impact of the SNR
on the parameter estimation (7., log g and [Fe/H]) with ANN is
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explored in Snider et al. (2001). They found that reasonably accurate
estimates can be obtained when networks are trained with spectra —
not derived parameters — with similar SNR as those of the unlabelled
data, for SNR as low as 13.

Recio-Blanco, Bijaoui & de Laverny (2006) determined three at-
mospheric parameters (7., log g and [M/H]) and individual chem-
ical abundances from stellar spectra using the MATISSE (MA-
Trix Inversion for Spectral SynthEsis) algorithm. They introduced
Gaussian white noise to yield five values of SNR between 25 and
200 and found that errors increased considerably for SNR lower
than ~25. In Navarro, Corradi & Mampaso (2012), authors present
a system based on ANN trained with a set of line-strength indices
selected among the spectral lines more sensitive to temperature and
the best luminosity tracers. They generated spectra with a range
of SNR between 6 and 200 by adding Poissonian noise to each
spectrum. Their scheme allows classification of spectra of SNR as
low as 20 with an accuracy better than two spectral subtypes. For
SNR ~ 10, classification is still possible but at a lower precision.

In recent years, there seems to be a tendency to use the spectrum
rather than fluxes or equivalent widths derived from it (see e.g.
Torres et al. 2012; Recio-Blanco et al. 2014, and references therein;
Ness etal. 2015; Walker, Olszewski & Mateo 2015; or Recio-Blanco
etal. 2016). In this work we focus in this latter approach, and attempt
to assess the relative merits of various techniques to serve as a guide
for future applications of machine learning techniques for regression
of stellar atmospheric physical parameters.

This paper presents a comparative study of the most popular data
compression technique applied to stellar spectra (PCA) and five al-
ternatives (two linear and three nonlinear techniques). The aims of
the paper are (1) to investigate to what extent novel data compres-
sion techniques outperform the traditional PCA on stellar spectra
data sets, (2) to test the robustness of these techniques and their per-
formance in atmospheric parameters estimation for different SNRs,
(3) to investigate the number of regression models of different SNRs
needed to obtain the best generalization performance for any rea-
sonable SNR of the evaluation data set and (4) to analyse the effect
of the grid density over the regression performance in atmospheric
parameters estimation. The investigation is performed by an empir-
ical evaluation of the selected techniques on specifically designed
synthetic data sets. In Section 2, we describe the data sets used
in our experiments. In Section 3, we review the data compression
techniques evaluated in this work and their properties. Section 4
presents our results when comparing the compression techniques
and compression rates in terms of the atmospheric parameter esti-
mation errors. In Section 5, we evaluate the optimal match between
the SNR of the training set examples to the SNR of the evaluation
set, and in Section 6 we present the main results from the analy-
sis of the effect of the training set grid density over the regression
performance. Finally, in Section 7 we summarize the most rele-
vant findings from the experiments and discuss their validity and
limitations.

2 THE DATA SET

The full set of spectra used in our experiments was divided into two
groups:

(i) The training set, which refers to the subset of spectra used to
fit the regression models (the so-called training phase).

(ii) The evaluation set, which refers to the subset of spectra not
used for training, and used only to assess the performance of a given
model when applied to previously unseen spectra.
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Figure 1. Coverage in parameter space of the data set. Grey circles repre-
sent spectra available in the original collection provided by the Gaia—ESO
collaboration. Red circles correspond to missing spectra that were linearly
interpolated as described in the text.

The synthetic spectra that form the basis of our study have
been computed from MARCS model atmospheres (Gustafsson
et al. 2008) and the turbospectrum code (Alvarez & Plez 1998;
Plez 2012) together with atomic and molecular line lists. These
spectra were kindly provided by the Gaia—ESO team in charge
of producing the physical parameters for the survey (see de
Laverny et al. 2012, for further details). More specifically, our
analyses were performed using spectra simulated with two differ-
ent setups from the high-resolution (HR) mode of the GIRAFFE
spectrograph, which was used to carry out the observations of
the survey: the HR10 setup (534-562 nm) and the HR21 setup
(848-900 nm).

The complete data set (including training and evaluation data)
contains a grid of 8780 synthetic HR spectra (R = 19 800) be-
tween 5339 and 5619 A (the nominal GIRAFFE HR 10 setup) with
effective temperatures between 4000 and 8000 K (step 250 K),
logarithmic surface gravities between 1.0 and 5.0 (step 0.5), mean
metallicities between —3.0 and 1.0 (with a variable step of 0.5
or 0.25 dex) and [« /Fe] values varying between —0.4 and +0.4
dex (step 0.2 dex) around the standard relation with the follow-
ing a-enhancements: [or/Fe] = 40.0 dex for [M/H] > 0, [« /Fe]
= +0.4 dex for [M/H] = <—1.0 and [«/Fe] = —0.4[M/H] for
[M/H] between —1.0 and +0.0 (Fig. 1). Elements considered to be
a-elements are O, Ne, Mg, Si, S, Ar, Ca and Ti. The adopted solar
abundances are those used by Gustafsson et al. (2008). Fig. 2 (left)
shows some example spectra from this data set.

The sample size of our data set (8780 spectra) is relatively small
compared to the input dimension (2798 flux values per spectrum).
With the rule of thumb of a minimum of 10 samples per dimension
(Jain, Duin & Mao 2000), our data set should contain at least 10>7%8
spectra. In most real case applications in astronomy, the ratio of
sample size to input dimensions is much lower and thus, the curse-
of-dimensionality problem is expected to affect even more severely
the inference process.

With a view to analyse the dependence of the validity of the
results obtained with the selected data set, we used a second data
set which is based on the same grid of atmospheric parameters but
covering a different wavelength range. This new data set contains
HR spectra (R = 16 200) between 8484 and 9001 A (the nominal
GIRAFFE HR21 setup). Fig. 2 (right) shows some example spectra
from this data set. In this validity analysis, efforts were focused on
the effective temperature.
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GIRAFFE HR21 setup
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Figure 2. Example spectra from the nominal GIRAFFE HR10 setup (left) and the nominal GIRAFFE HR21 setup (right).

3 DATA COMPRESSION

In a dynamic environment, a complete rerun of a data compression
algorithm becomes prohibitively time and memory consuming. For
the sake of computational efficiency, the selection of the data com-
pression techniques tested in our experiments was done amongst
those capable of projecting new data on to the reduced dimensional
space defined by the training set without having to re-apply the
algorithm (process also known as out-of-sample extension). Thus,
in this work, we investigated three linear data compression tech-
niques such as PCA, independent component analysis (ICA) and
discriminative locality alignment (DLA), as well as three nonlinear
reduction techniques that can be generalized to new data: wavelets,
kernel PCA and diffusion maps (DMs). We aimed at minimizing the
regression error in estimating stellar atmospheric parameters with
no consideration of the physicality of the compression coefficients.
Physicality of the coefficients is sometimes required, for example,
when trying to interpret galactic spectra as a combination of non-
negative components, which closely resembles the physical process
of emission in the mid-infrared.

Other linear and nonlinear techniques could be used for data
compression, such as linear discriminant analysis (LDA), LLE,

Isomap, etc. When the number of variables is much higher than
that of training samples, classical LDA cannot be directly applied
because all scatter matrices are singular and this method requires
the non-singularity of the scatter matrices involved. Isomap’s per-
formance exceeds the performance of LLE, especially when the
data are sparse. However, in presence of noise or when the data are
sparsely sampled, short-circuit edges pose a threat to both Isomaps
and LLE algorithms (Saxena, Gupta & Mukerjee 2004). Short-
circuit edges can lead to low-dimensional embeddings that do not
preserve a manifold’s true topology (Balasubramanian et al. 2002).
Furthermore, Isomap and LLE cannot be extended out of sample.

3.1 Principal component analysis (PCA)

PCA (Pearson 1901; Hotelling 1933) is by far the most popular
linear technique for data compression. The aim of the method is
to reduce the dimensionality of multivariate data whilst preserving
as much of the relevant information (assumed to be related to the
variance in the data) as possible. This is done by finding a linear
basis of reduced dimensionality for the data, in which the amount of
variance in the data is maximal. It is important to remark that PCA
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is based on the assumption that variance is tantamount to relevance
for the regression task.

PCA transforms the original set of variables into a new set of
uncorrelated variables, the principal components, which are lin-
ear combinations of the original variables. The new uncorrelated
variables are sorted in decreasing order of variance explained. The
first new variable shows the maximum amount of variance; the
second new variable contains the maximum amount of variation
unexplained by the first one, and is orthogonal to it, and so on. This
is achieved by computing the covariance matrix for the full data set.
Next, the eigenvectors and eigenvalues of the covariance matrix are
computed, and sorted according to decreasing eigenvalue.

3.2 Independent component analysis (ICA)

ICA (Comon 1994) is very closely related to the method called blind
source separation or blind signal separation (Jutten & Hérault 1991).
It is the identification and separation of mixtures of sources with
little prior information. The goal of the method is to find a linear
representation of non-Gaussian data so that the components are sta-
tistically independent, or as independent as possible (Hyvarinen &
0Oja 2000).

Several algorithms have been developed for performing ICA
(Bell & Sejnowski 1995; Belouchrani et al. 1997; Ollila &
Koivunen 2006; Li & Adali 2008). A large widely used one is the
FastICA algorithm (Hyvarinen & Oja 2000) which has a number
of desirable properties, including fast convergence, global conver-
gence for kurtosis-based contrasts, and the lack of any step-size pa-
rameter. RobustICA (Zarzoso & Comon 2010) represents a simple
modification of FastICA, and is based on the normalized kurtosis
contrast function, which is optimized by a computationally effi-
cient iterative technique. It is more robust than FastICA and has a
very high convergence speed. Another widely used ICA algorithm is
the Joint Approximation Diagonalisation of Eigen-matrices (JADE;
Cardoso & Souloumiac 1993). This approach exploits the fourth-
order moments in order to separate the source signals from mixed
signals. In this work, we selected the JADE algorithm for projecting
the original spectra in the space of independent components.

3.3 Discriminative locality alignment (DLA)

DLA (Zhang, Tao & Yang 2008) is a supervised manifold learning
algorithm that performs data compression by utilizing the class label
information of the data instances. In our case, we are not faced with
a classification task and therefore, our examples in the training set
do not have classes attached to them. In order to test the potential of
this technique, we use the value of the atmospheric parameters (7.,
log g, [M/H], or [«/Fe]) as class labels. The training set examples
are spectra synthesized for a limited set of values of the physical
parameters (see Section 2 and Fig. 1 for an illustration of the set of
values used in training). It is this set of allowed values that we use as
class label. We are aware of the gross simplification of discretizing
the full range of allowed physical parameters (an interval of real
numbers) into a limited subset of values.

The learning algorithm can be divided into three stages: part
optimization, sample weighting and whole alignment. In the first
stage, we define a patch P; for each spectrum S; as the set that
includes S; and its k-nearest neighbours. The set of k-nearest neigh-
bours, in turn, is defined as the set of k spectra with minimum
distances from S;. In our case, we use Euclidean distances. On
each patch P;, DLA preserves the local discriminative information
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through integrating the two criteria that (i) the distances between
intra-class spectra are as small as possible and (ii) the distance be-
tween the inter-class spectra is as large as possible. In the second
stage, each part optimization is weighted by the margin degree, a
measure of the importance of a given spectrum for classification. Fi-
nally, DLA integrates all the weighted part optimizations to form a
global subspace structure through an alignment operation (Zhang &
Zha 2002). The projection matrix can be obtained by solving a stan-
dard eigendecomposition problem.
DLA requires the selection of the following two parameters:

(i) Cardinality of the neighbourhood in the same class (k;): the
number of nearest neighbour spectra in the same class as S;.

(ii) Cardinality of the neighbourhood in different classes (k;): the
number of nearest neighbour spectra in classes other than the class
of S,' .

This method obtains robust classification performance under the
condition of small sample size. Furthermore, it does not need to
compute the inverse of a matrix, and thus it does not face the matrix
singularity problem that makes LDA and quadratic discriminant
analysis not directly applicable to stellar spectral data.

3.4 Diffusion maps (DMs)

DMs (Coifman & Lafon 2006; Nadler et al. 2006) are a nonlinear
data compression technique that assumes that the data (the spectra
in our case) are contained in a manifold of much lower dimension-
ality than the embedding input space. The objective then is to find
a representation in the manifold intrinsic coordinates. This is so
even if the observed data (spectra) are non-uniformly distributed
along the manifold, i.e. if the density of spectra is not uniform. A
non-uniform data distribution may lead to reduced performance of
regression algorithms.

DMs are based on the assumption that there exists a low-
dimensional manifold or topological space embedded in the high-
dimension space of predictive variables. Thus, this technique aims
to uncover the manifold structure in the data. We conjecture that a
smooth variation of the stellar atmospheric parameters yields spec-
tra that lie on a manifold. Therefore, we apply DM to attempt to
discover the low-dimensional space that adequately represents such
manifolds without loss of information.

DM starts from a graph representation of the data, whereby each
data point (spectrum) is a node. Nodes in the graph are connected by
arcs with weights, and each weight measures the similarity between
the nodes (spectra) it connects. Given the graph representation,
we can define the quest for new coordinates in the manifold as
a minimization process that involves the graph Laplacian matrix,
the eigenvectors of which encode the new manifold intrinsic coor-
dinates. Similarity, it can be approximated in a number of ways,
including distances and kernels. The hope is that this new represen-
tation will capture the main structures of the data in few dimensions.
In the low-dimensional representation of the data, DM attempts to
retain the relationship between pairs of data points (spectra) as
faithfully as possible.

In this work, the results were optimized by controlling the degree
of locality in the diffusion weight matrix (referred to below with
the parameter name eps.val).

Finally, the classical Nystrom formula (Williams & Seeger 2001)
was used to extend the diffusion coordinates computed on a sub-
sample (the training set) to other spectra (the evaluation set).
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3.5 Wavelets

Wavelets (Mallat 1998) are a set of mathematical functions used to
approximate data and more complex functions by decomposing the
signal in a hybrid space that incorporates both the original space
where the data lie (which we will refer to as original space), and
the transformed frequency domain. In our case, the original space
will be the wavelength space, but in representing time series with
wavelets the original space would be the time axis. The wavelet
transform is a popular feature definition technique that has been
developed to improve the shortcomings of the Fourier transform.
Wavelets are considered better than Fourier analysis for modelling
because they maintain the original space information while includ-
ing information from the frequency domain.

Wavelets can be constructed from a function (named mother
wavelet), which is confined to a finite interval in the original space.
This function is used to generate a set of functions through the
operation of scaling and dilation applied to the mother wavelet.
The orthogonal or biorthogonal bases formed by this set allows
the decomposition of any given signal using inner products, like in
Fourier analysis. That is, wavelet and Fourier analyses are similar
in the sense that both of them break a signal down into its con-
stituent parts for analysis. However, whereas the Fourier transform
decomposes a signal into a series of sine waves of different frequen-
cies, the wavelet transform decomposes the signal into its wavelet
components (scaled and shifted versions of the mother wavelet).

At high frequency (short-wavelength scales), the wavelets can
capture discontinuities, ruptures and singularities or noise in the
original spectrum. At low frequency (longer wavelength scales),
the wavelet characterizes the coarse structure of the spectrum to
identify the long-term trends and/or absorption bands, for example.
Thus, wavelet analysis offers multiresolution analysis in the original
space and its frequency transformed domain, and it can be useful to
reveal trends, breakdown points or discontinuities.

Data compression with wavelets consists of keeping a reduced
number of wavelet coefficients. There are two common ways of
coefficient selection: ((i) to eliminate the high-frequency coeffi-
cients that are assumed to reflect only random noise, and (ii) to
keep the k most statistically significant wavelet coefficients (which
yields a representation of the signal with less variance; Li, Ma &
Ogihara 2010). There are more sophisticated ways to further reduce
the number of wavelet coefficients using standard machine learning
techniques for feature selection, such as the LASSO (Least Absolute
Shrinkage and Selection Operator) used in Lu & Li (2015), wrapper
approaches, information theory measures, etc. A full analysis of all
these alternatives is out of the scope of this paper, and we will only
apply the first reduction mentioned above.

3.6 Kernel PCA

Kernel PCA is the reformulation of traditional linear PCA in a
high-dimensional space that is constructed using a kernel function
(Scholkopf, Smola & Miiller 1998). This method computes the
principal eigenvectors of the kernel matrix, rather than those of the
covariance matrix. The reformulation of PCA in kernel space is
straightforward, since a kernel matrix is similar to the inner product
of the data points in the high-dimensional space that is constructed
using the kernel function (the so-called kernel trick). The application
of PCA in the kernel space allows for the construction of nonlinear
mappings of the input space.

Since kernel PCA is a kernel-based method, the mapping per-
formed relies on the choice of the kernel function. Possible choices
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for the kernel function include the linear kernel (i.e. traditional
PCA), the polynomial kernel and the Gaussian kernel. An impor-
tant weakness of kernel PCA is that the size of the kernel matrix is
proportional to the square of the number of instances in the data set.

In this work, we used the Gaussian kernel and optimized the
predictive performance by fine tuning the inverse kernel width (o).

4 COMPARISON OF SPECTRUM
COMPRESSION TECHNIQUES AND OPTIMAL
RATES

We investigate the utility of six data compression techniques for
feature extraction with a view to improving the performance of at-
mospheric parameters regression models. The robustness of these
techniques against increasing SNR is evaluated, and the generaliza-
tion performance of training sets of varying SNRs is analysed.

Our set of experiments proceeds in three stages. In the first stage,
we aim at comparing the various compression techniques and com-
pression rates for different SNR regimes in terms of the atmospheric
parameter estimation errors. As a result of these experiments, we
select an optimal compression approach and rate (dimensionality of
the reduced space).

Different machine learning models have been used for the au-
tomatic estimation of atmospheric parameters from stellar spectra.
Two of the most widely used techniques in practice are ANN and
SVMs. Unlike ANN, SVM does not need a choice of architecture
before training, but there are some parameters to adjust in the kernel
functions of the SVM. We use SVM with radial basis kernel func-
tions and adjust the SVM parameters by maximizing the quality of
the atmospheric parameter (7., log g, [M/H] or [« /Fe]) prediction
as measured by the root-mean-squared error (RMSE, equation 1) in
out-of-sample validation experiments.

n

I,
RMSE; = |~ (0 - 0ii)”, M

i=1

where k indexes the atmospheric parameter (0, is one of T, log g,
[M/H] or [«/Fe]), 9;{;,- and 0. ; are the predicted and target values
of 6, for the ith sample spectrum and »n represents the total number
of spectra in our evaluation set.

In order to study the dependence of the estimation performance
on the noise level of the input spectra, Gaussian white noise of dif-
ferent variances (SNRs equal to 100, 50, 25 and 10) was added to the
original synthetic spectra. Then, the data sets were randomly split
into two subsets, one for training (66 per cent of the available spec-
tra) and the other for evaluation (the remaining 34 per cent). Since
the goal of these first experiments is to compare the compression
techniques rather than obtaining the best predictor, splitting the data
set into training and evaluation sets is considered a good scheme. In
essence, the experimental procedure consists of the following steps
illustrated in Fig. 3:

(i) Compute the low-dimensional representation of the data using
the training set. Because some of the techniques used to reduce the
dimensionality depend on the setting of one or more parameters,
a tuning process was performed in order to determine the optimal
parameter values (in the sense that minimize the RMSE; see below).
Table 1 presents the ranges of values that were searched, as well as
the best parameter value obtained in each case.

(ii) Construct SVM models using the training set, and a varying
number of dimensions (2, 5, 10, 15, 20, 25, 30 and 40) of the reduced
space. The SVM parameters (kernel size and soft-margin width) and
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Figure 3. Process flow chart for investigating the performance of the selected data compression techniques.

Table 1. Summary of the parameters analysed for the data compression
techniques.

Technique Parameter Analysed Best
range value
DLA ki [2-8] 2
ko [2-8] 3
DM eps.val [0.01-700] 600
Kernel PCA o [0.0001-0.01] 0.001

the compression parameters (where applicable; see Table 1) are fine-
tuned to minimize the prediction error of the atmospheric parameter
(Ter, log g, [M/H] or [a/Fe]).

(iii) Project the evaluation spectra on to the low-dimensional
space computed in step (i).

(iv) Obtain atmospheric parameter predictions by applying the
SVM models trained in step (ii) to the evaluation set obtained in
step (iii).

(v) Calculate the performance of the predictor based on the
RMSE obtained on the evaluation set.

4.1 Results

First, we compare the performance of the data compression tech-
niques described in Section 3 using noise-free synthetic spectra as
well as degraded spectra with SNR levels of 100, 50, 25 and 10.
Figs 4-7 show the RMSE obtained with the evaluation set of the
HR10 spectra (the 33 per cent of the full set of spectra that was not
used to define the compression transformation or to train SVM mod-
els) grouped by SNR. Equivalent figures grouped by compression
technique are included in Appendix A, which is available online, to
facilitate comparisons.

Inspection of the figures reveals that the best strategies to com-
press the spectra are kernel PCA and ICA, with ICA performing
marginally better than kernel PCA in most of the parameter space,
except sometimes for the lowest compression rate. RMSE errors
increase only moderately down to an SNR of 10, which seems to
indicate that most of the examined compression techniques serve
well as noise filters.

The performance comparison of the analysed data compression
techniques shows that although traditional PCA is not the most effi-
cient method, it outperforms some of the nonlinear techniques used
in this study, such as DM or wavelets. The lower performance of
DM compared to that of PCA could be partially explained by the
Nystrom extension. Although this method results in diffusion coor-
dinates very similar to those that would be obtained by including
the new spectra in the DM, it may lead to small losses of prediction
accuracy. As an illustration, the RMSE obtained for the T, in the
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high SNR regime (SNR = 100) is between 0.5 and 1.5 per cent bet-
ter if the diffusion coordinates were computed from the whole data
set, instead of applying the out-of-sample extension. In the case of
wavelets, it seems clear that even at the lowest compression rates
of 40 components we are eliminating spectral information that is
relevant for the subsequent regression task.

Overall, wavelets combined with SVM models have the highest
errors regardless of the number of retained dimensions, with the
exception of the [M/H] estimation where DLA performed worse
for noisy synthetic spectra. Then, DLA was outperformed by most
other techniques (except wavelet compression) for almost any com-
pression rate and SNR. However, it achieved the lowest prediction
errors for the hardly useful scenarios of noise-free data (not shown
here for the sake of conciseness) or the highest compression rates
(two or five dimensions) when estimating T.¢ and log g. PCA and
DM yield similar T, prediction errors in the high SNR regime,
but DMs are more robust against noise specially for the lowest
compression rates examined.

It is interesting to note that compression techniques can be
grouped into two categories: DLA, DM and wavelets show a flat
RMSE for target dimensions greater than 10, even for the lowest
SNR explored in this section (SNR = 10); PCA, kernel PCA and
ICA show positive slopes in the RMSE curves for SNRs below 25
and target dimensionalities greater than 25, indicating that compo-
nents beyond this limit are increasingly sensitive to noise.

The relative difference of DM with respect to the best performing
compression techniques (ICA and kernel PCA) improves as the SNR
diminishes until it becomes almost comparable for SNR = 10, while
at the same time rendering the SVM regression module insensitive
to the introduction of irrelevant features (as shown by the flat RMSE
curves for increasing numbers of dimensions used).

Table 2 quantifies the prediction errors of the best models for each
SNR. It is interesting that ICA compression with 20 independent
components remains as the best option for any SNR, except for the
unrealistic noise-free data. These results evidence that for a given
sample size (the number of spectra in the training set) there is an
optimal number of features beyond which the performance of the
predictor will degrade rather than improve. On the other hand, as
expected, the quality of atmospheric parameter predictions degrades
for lower SNR. However, RMSE errors were relatively low even for
low SNR (~10).

4.1.1 Applicability of the HR10 results to the HR21 setup

The same analysis was carried out on the HR21 data set character-
ized by a much wider wavelength range (almost twice as wide as
the HR10 setup). Fig. 8 and Table 3 show the results obtained for
the T with the evaluation set.
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Figure 6. Metallicity estimation errors as a function of the number of dimensions used for data compression, for noisy synthetic spectra from the nominal

GIRAFFE HR10 setup.

Some of our previous conclusions are confirmed by these results:
(1) kernel PCA and ICA remain as the best compression techniques
consistently for all SNRs, but at the lowest SNR (10), PCA and DM
have comparable performances; (ii) the SVM models trained with
wavelet coefficients have the highest errors and are outperformed
by PCA in most of the parameter space and (iii) DLA performed
best for both noise-free data and the highest compression rates (two
to five dimensions). However, there are also some differences. For
low SNR data, the optimality criterion translates into retaining fewer
components. This fact was first identified by Bailer-Jones, Irwin &
von Hippel (1998) in the context of PCA compression of rela-
tively low-resolution spectra. We confirm this conclusion for other
compression techniques in the HR21 setup where the wavelength
coverage is greater than 300 A, but not for the smaller coverage
characteristic of the HR10 setup. Also, in the high SNR regimes the
RMSE errors are lower with the HR21 setup than those obtained
with the HR10 setup. However, the performance is considerably
worsened for the lowest SNR explored in this work (SNR = 10).
This clearly indicates that the spectral information relevant for the
prediction of effective temperatures is less robust to noise than in
the case of the HR10 setup.

5 OPTIMAL TRAINING SET SNR

In this section, we analyse the optimal match between the SNR of
the training set and that of the spectra for which the atmospheric
parameter predictions are needed (in the following, the evaluation
set).

In order to analyse the dependence of the prediction accuracy
with the training set SNR, we generate 25 realizations of the noise
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for each of the following eight finite SNR levels: 150, 125, 100,
75, 50, 25, 10 and 5. We create the 25 noise realizations in or-
der to estimate the variance of the results and the significance of
the differences. This amounts to 25 x 8 = 200 data sets, plus
the noiseless data set, all of which are compressed using ICA. The
20 first independent components are retained for the subsequent
regression stage. The choice of compression technique and target
dimensionality was dictated by the results presented in the previous
section. For each of these data sets, we trained an SVM model to
estimate each of the atmospheric parameters (7., log g, [M/H] or
[« /Fe]), and to assess the consistency of the results as the evaluation
set SNR degrades. The model performances were evaluated using
10-fold cross-validation as follows:

(i) The noiseless data set is replicated 25 x 8 times: 25 realiza-
tions of Gaussian white noise for each of the following SNRs: 150,
125, 100, 75, 50, 25, 10 and 5. These 200 replicates together with
the original noiseless data set form the basis for the next steps.

(i1) Each spectrum in each data set is projected on to 20 inde-
pendent components (as suggested by the experiments described in
Section 4).

(iii) Each of the 201 compressed data sets is then split into 10
subsets or folds. The splitting is unique for the 201 data sets, which
means that each spectrum belongs to the same fold across all 201
data sets.

(iv) An SVM model is trained using 9-folds of each data set (all
characterized by the same SNR). This amounts to 201 models.

(v) The model constructed in step (iv) is used to predict physical
parameters for the tenth fold in all its 201 versions. The RMSE
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Figure 7. [«/Fe] estimation errors as a function of the number of dimensions used for data compression, for noisy synthetic spectra from the nominal

GIRAFFE HR10 setup.

Table 2. RMSE on the evaluation set of 2986 spectra for the best SVM trained models (HR10).

SNR Method Nr. dim. RMSE RMSE RMSE RMSE
Toir (K) log g [M/H] (dex) [a/Fe] (dex)

o0 DLA /ICA? 40/30/20° 27.16 0.13 0.017 0.025

100 ICA 20 50.81 0.15 0.033 0.028

50 ICA 20 5491 0.17 0.038 0.032

25 ICA 20 60.59 0.18 0.043 0.036

10 ICA 20 76.21 0.21 0.057 0.044

Notes. “The best performance for T, log g and [M/H] was obtained with DLA, while best

performance for [« /Fe] was obtained with ICA.

bThe best performance for Tt and log g was obtained with 40 dimensions, while for [M/H] and

[o/Fe], 30 and 20 dimensions were needed, respectively.

is calculated independently for each value of the SNR and noise
realization.

(vi) Steps (iv) and (v) are repeated 10 times (using each time
a different fold for evaluation) and the performance measure is
calculated by averaging the values obtained in the loop.

5.1 Results

Fig. 9 shows the mean (averaged over the 25 noise realizations)
RMSE results and the 95 per cent confidence interval for the mean
as a function of the SNR of the evaluation set. The nine different
lines correspond to the SNR of the training set used to generate both
the projector and the atmospheric parameters predictor. The main
conclusions of the analysis can be summarized as follows.

The analysis yields the very important (albeit somehow pre-
dictable) consequence that models trained with noise-free spectra

are the worst choice for spectra with SNRs up to 50/75, and are
unnecessary for Ty, log g and [«/Fe] in contexts of higher SNRs.
Only the [M/H] regression models slightly benefit from training
with noiseless spectra if the evaluation spectra are in the SNR > 50
regime. The accuracy of the model trained with noise-free spectra
degrades exponentially for SNR < 50.

There are no large discrepancies amongst the estimations ob-
tained by applying the 25 models trained with a given SNR to
different noise realizations, which translates into small confidence
intervals and error bars in the plot. This is so even for the lowest
SNR tested (SNR = 5).

For the effective temperature and metallicity estimation from
evaluation spectra with SNR > 50, there are minimal differences in
the precision achieved by models trained with spectra of SNR > 50,
while for evaluation sets with 50 > SNR > 10, the best accuracy
is obtained with the model constructed from spectra with SNR of
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Figure 8. Temperature estimation errors as a function of the number of dimensions used for data compression, for noisy synthetic spectra from the nominal

GIRAFFE HR21 setup.

Table 3. RMSE on the evaluation set of 2986 spectra for the best SVM
trained models (HR21).

SNR Method Nr. dim. RMSE
Tesr (K)
00 DLA 15 12.58
100 ICA 20 32.69
50 ICA 20 49.18
25 ICA 15 82.36
10 ICA 10 202.39

50. For SNR lower than 10, the model with best generalization
performance is that trained with SNR = 10. Hence, two models
suffice to obtain the best performance across the entire SNR range
explored in this set of experiments: one trained with SNR = 50
examples for evaluation spectra of any SNR above 10, and one
trained with SNR = 10 examples for lower SNRs.

Finally, only one ICA4+-SVM model trained with SNR = 25 ex-
amples would be enough to estimate the surface gravity for spectra
of all SNRs with the best performance (the SNR = 50 model yield-
ing similar although lower performances), and only one ICA4+SVM
model trained with SNR of 50 would be enough to estimate the
alpha-to-iron ratio for spectra of all SNRs.

As a summary, models trained with noiseless spectra are either
catastrophic choices or just equivalent to other models. Moreover,
there is no need to match the SNR of the training set to that of
the real spectra because only two ICA4+SVM models would be
enough to estimate 7. and [M/H] in all SNR regimes, and a single
model is needed for the optimal prediction of surface gravities and
alpha-to-iron ratios.

MNRAS 465, 4556-4571 (2017)

5.1.1 Application to the HR21 setup spectra

The same evaluation procedure described above was applied to the
HR21 setup spectra in order to check for the applicability of our
conclusions in different wavelength ranges and coverages. Fig. 10
shows the results obtained for the prediction of Teg.

Again, we observe that there is no need to match the SNR of the
training set to that of the real spectra. Models trained with noise-free
spectra are only adequate to estimate T.s of noise-free spectra, and
completely useless in any other SNR regime. This effect is much
more evident here than in the case of the HR10 setup.

It is also clear that again, if the evaluation spectra are in the
SNR > 25 regime, the T, regression models have to be trained
with SNR > 50 examples. For evaluation spectra with SNR > 100,
the differences in the precision achieved by models trained with
spectra of SNR < 50 are easier to notice than in the HR10 setup.
There, the best option is one ICA+SVM model trained with SNR
of 125.

In summary, our conclusions for the HR10 setup remain valid,
except that a third model a model trained with SNR = 125 examples
would be marginally better than the SNR = 50 one in the highest
SNR regime (that is, above 100).

6 TRAINING SET DENSITY

In this section, we evaluate the dependence of the regression RMSE
with the training set density. In order to simplify the interpreta-
tion of the results, we restrict the problem to solar metallicities and
alpha abundance ratios. This simplification reduces the set of avail-
able spectra from 8780 to only 137 spectra in HR10 setup data set
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with solar [M/H] and [« /Fe]. These 137 spectra are situated at the
nodes of a regular grid except for a few gaps (see Fig. 1) that were
interpolated as a weighted bilinear combination four nearest neigh-
bours in the space of physical parameters. Thereafter, successive
grid refinements were obtained by recursively interpolating spec-
tra at intermediate points between grid nodes. These interpolated
spectra were obtained again as weighted linear combinations of the
bracketing spectra, with weights given by the inverse square of the
normalized Euclidean distance to the nearest neighbours.

A total of six grids of synthetic spectra with different grid densi-
ties were used to train SVM models. The T values varied between

Table 4. Size of the new data sets computed with different
grid densities.

Tefr step size (K) Number of spectra

50 679
62.5 545
100 343
125 271
200 175
250 143

4000 and 8000 K with step sizes equal to 50, 62.5, 100, 125, 200
and 250 K. The other grid parameters were established as follows:
the log g were regularly sampled from 1 to 5 dex in steps of 0.5 dex
and both [M/H] and [« /Fe] were set equal to zero. Table 4 presents
the step sizes used in this study as well as the number of synthetic
spectra available in each grid. In addition to this, noisy replicates of
these grids were generated for four different SNR levels (100, 50,
25 and 10).

We evaluated the performance of the SVM regression models
using 10-fold cross-validation. Figs 11 and 12 present the T esti-
mation errors obtained with the different grid densities and the two
optimal training set SNRs (50 and 10) found in the previous section.
Similar figures for SNR = 25 and 100 are shown in Appendix B
(available online).

As expected, the estimation errors increase when the grid density
decreases. We see how ICA remains as a winning alternative in
this second scenario (a simplified training set with no variation
in metallicity or [« /Fe]), where kernel PCA becomes non-optimal
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Figure 11. Temperature estimation error against the number of dimensions used for data compression. Each line corresponds to a model trained with a specific
grid step (SNR = 50).

and another linear technique (PCA) takes its place amongst the best dimensionality of the input space, it may be the case that much
performing techniques. finer grid spacings are needed for the benefits of DMs to become

The prevalence of our conclusion for ICA as a winning alternative apparent. More experiments are needed to confirm this hypothesis,
regardless of the grid spacing is reassuring. However, the nonlinear but in so far as the grid spacings are constrained to the values tested
version of PCA lost its place amongst the best performing com- here, DMs remain suboptimal choices.

pression techniques. It is evident from the comparison of Figs Al
(which is available online) and 11 that it is only at the largest grid

spacings (250 K) that the nonlinear version of PCA performs better 7 CONCLUSIONS

than the linear version (consistent with the results declared in Sec- In this work, we have carried out a complete set of experiments to
tion 4), because the latter improves faster due to the grid refinement. guide users of spectral archives to overcome the problems associ-
It remains to be tested whether this faster decrease in the RMSE is ated with the curse of dimensionality, when inferring astrophysical
due to the reduction in the training set complexity brought about parameters from stellar spectra using standard machine learning
by the removal of the non-solar metallicities and [o/Fe] ratios, or algorithms.
it is still present in the full space of four physical parameters. It In Section 4, we demonstrate that, taken globally (that is, includ-
is plausible that the simplification to solar abundances brings the ing the four stellar atmospheric parameters, a range of SNRs, and a
distribution of examples in feature space closer to a Gaussian distri- range of compression ratios), ICA outperforms all other techniques,
bution where indeed the first principal components are effectively followed by kernel PCA. The comparative advantage of using ICA is
more correlated with the effective temperature. clearer for the T.¢ and [« /Fe] regression models and less evident for
It is interesting to note that the (nonlinear) compression with log g and [M/H]. Furthermore, we prove that this advantage holds
DMs benefits much less from the grid refinement than the for a completely different wavelength range and a wavelength cov-
linear compression techniques PCA and ICA. Given the high erage twice as large too. This is not enough to recommend ICA

MNRAS 465, 4556-4571 (2017)

0202 4990}20 20 UO Jasn elory e op PepIsIoniun Aq Z€889GZ/9GS Y/ 1/S9p/aI01E/SEIUW/WO0D dNO DILSPED.//:SA)Y WO} POPEOJUMO(



Compression techniques for spectral analysis 4569
° GIRAFFE HR10 setup GIRAFFE HR10 setup
I . PCA ICA
5
\l:/ —
> * *
o | /N /
) e N
= < ] 0/0 J——— -
o o x 8 B— = ®
) | NI g
N S ¥ +Tx x——%
N \+ +/
° GIRAFFE HR10 setup . GIRAFFE HR10 setup
o 7 DLA Kernel PCA
~ .
£ Q4" e+, \
§. ] P o\ .
= 1 — ® B
(UDJ : 3 <o @ *\\\. o —F & ‘&43
= 3 \§:5 o o o o
—_— _ X
o t—x ‘{\i P —
o
° GIRAFFE HR10 setup GIRAFFE HR10 setup
2 e
- ) *k. Wavelets s, Diffusion Maps
= 2 \m
= A\ P
g_’ © | \\0\. —\ e ,/o/
w §Lﬁ>0 * . . \’ = g———%&
n +§¥ % e 5/518 o <o <
E ] \¥___2‘\+\x +tx X x:?f_ i
—3 %
o
o
T T T T T T T T
10 20 30 40 10 20 30 40
#dimensions #dimensions

Grid step

+ 50K X 62.5K & 100K = 125K 200K ¢ 250K

Figure 12. Temperature estimation error against the number of dimensions used for data compression. Each line corresponds to a model trained with a specific

grid step (SNR = 10).

compression of HR spectra for any spectrograph observations, but
it is a good indication that our results are not strongly dependent on
the actual characteristics of the spectra.

The conclusions drawn from the set of experiments described
in Section 4 are tied to the restricted range of physical parameters,
wavelengths and the spectral resolution of the data sets adopted (the
HR 10 and 21 setups), but we hope that they still hold for data sets of
similar characteristics (different wavelength ranges but similar reso-
lutions and parameter subspaces). In completely different scenarios
such as the coolest regions of the Hertzsprung—Russell diagram,
where spectra are dominated by molecular absorption bands, the
validity of our results still remains to be proved.

In Section 5, we show that there is no need to match the SNR
of unlabelled spectra (the spectra for which we want to predict
astrophysical parameters) with a regression model trained with
the same SNR. On the contrary, only two models are needed to
achieve optimal performance in 7.5 and [¢/Fe] regression models
(one trained with SNR = 50 examples for SNR > 10 spectra and the
other trained with SNR = 10 examples for the lowest SNR regime),
and only one model is needed for the prediction of log g and [M/H]
(trained with SNR = 25 and 50 examples, respectively). The Tes

result holds also for the HR21 setup regression, although the model
trained with SNR = 125 is marginally better than the SNR = 50

one in the highest SNR regime above 100.

In Section 6, we demonstrate in a very simplified setup with no
metallicity or «-enhancement effects incorporated in the training
set, the importance of dense training sets in reducing the cross-
validation errors, even in the context of compressed data spaces.
‘We emphasize that this is only applicable to cross-validation errors
(that is, errors estimated from spectra entirely equivalent to those
used for training). These cross-validation errors are often known
as internal errors as they do not take into account systematic dif-
ferences between the training and evaluation sets. In our case, we

have used MARCS model atmospheres, not observed spectra of

real stars. In practical applications of the results presented above,
the mismatch between the training set and the observed spectra in-
evitably leads to additional errors. It seems a reasonable working
hypothesis to assume that there is a limit beyond which the total
errors are dominated by this mismatch and further increasing the
training grid density will not significantly decrease the total errors.

Again, ICA turns out to be the best performing compression
technique in the simplified experiments described in Section 6. The
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underlying assumptions of ICA may not be fulfilled to their full ex-
tent in the context of stellar spectra, but certainly we have reasonable
hints that they apply, even if approximately. Our working hypothe-
sis is that the independent components reflect groupings of spectral
lines of various atomic elements with similar behaviour, such that
the strengths and shapes of the lines pertaining to a given component
respond in the same way to changes in the atmospheric parameters.
Any such component would certainly have a non-Gaussian distribu-
tion across our training set (assumption one), albeit the fulfilment
of the statistical independence assumption is, however, less clear
under our interpretation of the ICA components. JADE maximizes
non-Gaussianity (rather than minimizing mutual information as in
other flavours of ICA) via the fourth-order moment of the distri-
bution, and this turns out to result in the best projection amongst
those tested in our regression models. This is certainly a result that
holds for the synthetic spectra that constitute our working data set,
but we have hints that this holds too for observed spectra (Sarro
et al. 2013).

There are other reasons that may limit the applicability of the
results presented in this work. Extending the applicability analysis
to prove our conclusions universally valid is beyond the scope of
this article.

In the first place, we have used the most standard or general ver-
sions of the techniques evaluated here. In the case of wavelet com-
pression, for example, there are approaches to coefficient shrinkage
other than simply removing the smallest spatial scales. The bibliog-
raphy is endless and it would be impossible to test each and every
proposed variation of the techniques presented here. In any case, it
is important to note that the validity of our conclusions is limited to
the standard versions tested here.

Another source of limitation is due to the use of a single re-
gression model to assess the prediction errors. Again, SVMs and
empirical risk minimization are very standard and robust statistical
learning techniques amongst the top performing models for a very
wide range of real life problems (van Gestel et al. 2004). Of course,
the no-free-lunch theorem (see Igel & Toussaint 2005, and refer-
ences therein for a formal statement of the theorem) always allows
for the existence of algorithms that perform better than SVMs for
this particular problem, but in the absence of free lunches, SVMs
are a very reasonable choice and a good standard to measure the
compression techniques.

Finally, we have focused our research in a battery of discrim-
inative regression models where the curse of dimensionality may
lead to severe problems. Forward models such as the Cannon (Ness
et al. 2015) are not affected by this curse of dimensionality but
would certainly benefit from a reduction of the more than 80000
parameters needed to model each and every flux in the spectrum.
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