Analítica del aprendizaje y Big Dataheurísticas y marcos interpretativos
- 1 Facultad de Educación, UNED
- 2 Facultad de Filosofía, UNED
ISSN: 1989-7022
Ano de publicación: 2016
Título do exemplar: PolíTICa: Redes, Deliberación y Heurísticas Sociales
Número: 22
Páxinas: 87-103
Tipo: Artigo
Outras publicacións en: Dilemata
Proxectos relacionados
Resumo
La capacidad de acceder directamente a informaciones referidas a todo tipo de prácticas sociales mediadas digitalmente y la correspondiente acumulación masiva de los datos, ha situado a la evaluación de los fenómenos sociales en un nuevo terreno que pone en cuestión los modelos analíticos convencionales. La educación es un campo propicio para preguntarse sobre esos movimientos, evaluar su relevancia epistémica y precisar en qué consiste la radicalidad del cambio producido por una nueva capacidad tecnológica. Este artículo contribuye a explicar el impacto de ese nuevo escenario en el terreno de la evaluación del aprendizaje a partir de big data, dando cuenta del cambio en la estructura de las categorías empleadas y desarrollando una nueva aproximación a la analítica del aprendizaje basada en heurísticas.
Referencias bibliográficas
- Álvarez, J.F. (2002): El tejido de la racionalidad acotada y expresiva. En: Michael B. Wrigley (ed.), Dialogue, Language, Rationality. A Festschrift for Marcelo Dascal (pp. 11-29), Brasil, CLE/UNICAMP, http://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8644471/11893
- Anderson, C. (2008): The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. WIRED, 23 Junio, http://www.wired.com/2008/06/pb-theory/
- Andrejevic, M. (2013): Infoglut. How too Much Information is Changing the Way We Think and Know, New York, NY, Routledge.
- Boellstorff, T., & Maurer, B. (eds.) (2015): Data, Now Bigger and Better! Chicago, Prickly Paradigm Press.
- Bolin, G., & Schwarz, J.A. (2015): Heuristics of the algorithm: Big Data, user interpretation and institutional translation. Big Data & Society, 2(2). doi: 10.1177/2053951715608406
- Borgman, C.L. (2015): Big Data, Little Data, No Data: Scholarship in the Networked World, Cambridge, MA: MIT Press.
- Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A. D., & Seaton, D.T. (2013): Studying learning in the worldwide classroom: Research into edX’s first MOOC. Research & Practice in Assessment, 8(1), pp. 13–25.
- Buckingham, S., & Ferguson, R. (2012): Social Learning Analytics. Educational Technology and Society, 15(3), pp. 3-26.
- Buescher, C., Hauck, E., Schilberg, D., & Jeschke, S. (2012): Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-Up Process. Advances in Decision Sciences, vol. 2012. doi: 10.1155/2012/798286
- Chater, N., Oaksford, M., Nakisa, R., & Redington, M. (2003): Fast, Frugal, and Rational: How Rational Norms Explain Behavior. Organizational Behavior and Human Decision Processes, 90, pp. 63-86.
- Chavez, J.A. (2007): Enlivening problems with heuristics through learning activities and problem solving. Learning Science and Mathematics, 2, pp. 1-8.
- Cioffi-Revilla, C. (2014): Introduction to Computational Social Science: Principles and Applications, Berlin: Springer-Verlag.
- Collins, E.D. (2013): SJSU plus augmented online learning environment: Pilot project report. The Research & Planning Group for California Community Colleges, Sacramento, CA, http://www.sjsu. edu/chemistry/People/Faculty/Collins_Research_Page/AOLE%20Report%20Final%20Version_ Jan%201_2014.pdf
- Conole, G., Galley, R., & Culver, J. (2010): Frameworks for understanding the nature of interactions, networking, and community in a social networking site for academic practice. The International Review of Research in Open and Distance Learning, 12(3), http://www.irrodl.org/index.php/ irrodl/article/view/914/1666
- Couldry, N. (2014): Time and digital media: Time-deepening, time-deficits and narrative configuration. Draft paper para Time, memory and representation group, Södertörn University, 14 Marzo.
- Crawford, K., Gray, ML, & Miltner, K. (2014): Critiquing Big Data: Politics, Ethics, Epistemology. International Journal of Communication, 8, pp. 1663-1672, http://ijoc.org/index.php/ijoc/article/ view/2167/1164
- Crawford, K. (2016): Can an Algorithm Be Agonistic? Ten Scenes from Life in Calculated Publics. Science, Technology & Human Values, 41(1), pp. 77-92. doi: 10.1177/0162243915589635
- Cuban, L. (2015): Data-Driven Teaching Practices: Rhetoric and Reality, 6 Octubre, https:// larrycuban.wordpress.com/2015/10/06/another-look-at-data-driven-teaching-practices/
- Domínguez, D., & Trillo, P. (2014): Learning Competences in Open Mobile Environments: A Comparative Analysis Between Formal and Non-Formal Spaces. Open Praxis, 6(3), pp. 235-244. doi: http://dx.doi.org/10.5944/openpraxis.6.3.131
- Dzemyda, G., & Sakalauskas, L. (2011): Large-Scale Data Analysis Using Heuristic Methods. Informatica, 22(1), pp. 1–10.
- Echeverría, J., & Álvarez, J.F. (2008): Bounded Rationality in Social Sciences. En: Agazzi, E., Echeverría, J., & Rodríguez, A.G. (eds.), Epistemology and the Social: A Feedback Loop (pp. 173- 191), Amsterdam/New York, Rodopi.
- Evans, J. (2006): The heuristic-analytical theory of reasoning: extension and evaluation. Psychonomic Bulletin & Review, 13(3), pp. 378-395.
- Farrow, R. (2016): A Framework for the Ethics of Open Education. Open Praxis, 8(2), pp. 93-109. doi: http://dx.doi.org/10.5944/openpraxis.8.2.291
- Gigerenzer, G., & Gaissmaier, W. (2011): Heuristic Decision Making. Annual Review of Psychology, 62, pp. 451-482.
- Gigerenzer, G., & Selten, R. (Eds.) (2001): Bounded Rationality. The Adaptive Toolbox, Cambridge, MA., The MIT Press.
- Gigerenzer, G. (2015): Simply rational: Decision making in the real world, New York, Oxford University Press.
- Gil-Jaurena, I. (2013): Learning assessment in open, distance and flexible education. Open Praxis, 5(3), pp. 195-196, http://dx.doi.org/10.5944/openpraxis.5.3.82
- Gilovich, T., Griffin, D., & Kahneman, D. (eds.) (2002): Heuristics and biases: The psychology of intuitive judgment, New York, Cambridge University Press. Gitelman, L. (ed.) (2013): Raw Data Is an Oxymoron, Cambridge, MA., MIT Press.
- Graham, M. (2012): Big data and the end of theory? The Guardian, 9 Marzo, http://www.theguardian. com/news/datablog/2012/mar/09/big-data-theory
- Hoon, T.S., Kor, L.K., & Singh, P. (2013): Learning Mathematics Using Heuristic Approach. Procedia Social and Behavioral Sciences, 90, pp. 862-869.
- Hutchins, E. (1995): Cognition in the Wild, Cambridge, MA., The MIT Press. Kahneman, D. (2003): A perspective on judgment and choice: Mapping bounded rationality. American
- Psychologist, 58, pp. 697-720. Kahneman, D. (2012): Thinking Fast and Slow, London, Penguin Group.
- Kamenetz, A. (2015): The Test: Why Our Schools Are Obsessed with Standardized Testing–But You Don’t Have to Be, New York, PublicAffairs.
- Karlsson, M. (2014): Vi träffar Jonas Wallentin som är operativ chef på Google och diskuterar Analys.
- Dagensanalys.se, 9 Junio. Kitchin, R. (2014): Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), pp. 1-12. Klaes, M., & Sent, E-M. (2005): A conceptual history of the emergence of bounded rationality. History of Political Economy, 37(1), pp. 27-59.
- Lam, D. W. (2014): A Survey of Predictive Analytics in Data Mining with Big Data. Edmonton, Alberta, Canada, Athabasca University, https://www.academia.edu/8825157/A_Survey_of_Predictive_ Analytics_in_Data_Mining_with_Big_Data
- March. B. (2002): Heuristics as Social Tools. News Ideas in Psychology, 20, pp. 49-57. Metcalf, J., Crawford, K., & Keller, E.F. (2015): Pedagogical Approaches to Data Ethics. Council for Big Data, Ethics, and Society report, http://bdes.datasociety.net/council-output/pedagogicalapproaches-to-data-ethics-2/
- Metcalf, J., Keller, E.F., & boyd, d. (2016): Perspectives on Big Data, Ethics, and Society. Council for Big Data, Ethics, and Society, http://bdes.datasociety.net/council-output/perspectives-on-bigdata-ethics-and-society/
- Molich, R., Bevan, N., Curson, I., Butler, S., Kindlund, E., Miller, D., & Kirakowski, J. (1998): Comparative evaluation of usability tests. Proceedings of the Usability Professionals Association 1998 Conference (189-200), Chicago, IL., UPA.
- Mosco, V. (2014): To the Cloud: Big Data in a Turbulent World. Boulder, CO, Paradigm Publishers.
- Murphy, R., Gallagher, L., Krumm, A., Mislevy, J., & Hafter, A. (2014): Research on the Use of Khan Academy in Schools (Research Brief). Menlo Park, CA., SRI International, https://www.sri.com/ sites/default/files/publications/2014-03-07_implementation_briefing.pdf
- Nesterko, S., Dostenko, S., Hu, Q., Seaton, D., Reich, J., Chuang, I., Ho, A. (2013): Evaluating geographic data in MOOCs. Presentado en el Neural Information Processing Systems Workshop on Data Driven Education, Lake Tahoe, NV, http://nesterko.com/files/papers/nips2013-nesterko.pdf
- Nielsen, J. (1989): Coordinating user interfaces for consistency, Boston, MA., Academic Press.
- Nielsen, J., & Mack, R.L. (1994): Usability Inspection Methods, New York, NY: John Wiley & Sons.
- Pereda, C. (1994): Vértigos argumentales, Barcelona y México, Anthropos y UAM-Iztapalapa.
- Reich, J., Emanuel, J., Nesterko, S., Seaton, D.T., Mullaney, T., Waldo, J., Chuang, I., & Ho, A.D. (2014): HeroesX: The Ancient Greek Hero: Spring 2013 Course Report. HarvardX Working Paper Series, 3, pp. 1-19, https://dash.harvard.edu/handle/1/11988100
- Reich, J. (2015): Rebooting MOOC Research. Improve assessment, data sharing, and experimental design. Science, 347(6217), pp. 34-35. doi: 10.1126/science.1261627
- Reis, C.A., & McNeill, F. (2014): Heuristics in Analytics: A Practical Perspective of What Influences Our Analytical World, SAS Institute Inc., Cary, North Carolina.
- Robles, J.M. (2007): Bounded rationality: a realistic approach to decision making. Theoria, 16(1), pp. 41-58.
- Siemens, G, Gasevic, D., Haythornthwaite, C., Dawson, S., Buckingham, S., Ferguson, R., Duval, E., Verbert, K., & Baker, R.S.J.d. (2011): Open Learning Analytics: an integrated & modularized platform. Proposal to design, implement and evaluate an open platform to integrate heterogeneous learning analytics techniques. Concept paper, http://www.elearnspace.org/blog/wp-content/ uploads/2016/02/ProposalLearningAnalyticsModel_SoLAR.pdf
- Thaler, R., & Sunstein, C. (2008): Nudge: Improving Decisions about Health, Wealth, and Happiness, New Haven, CT., Yale University Press.
- Thille, C., Schneider, E., Kizilcec, R.F., Piech, C., Halawa, S.A., & Greene, D.K. (2014): The future of data-enriched assessment. Research & Practice in Assessment, 9(2), pp. 5-16.
- Tijerina, B. (2016): Campus Support Systems for Technical Researchers Navigating Big Data Ethics. EDUCAUSE review, Julio/Agosto, pp. 48-49, http://er.educause.edu/articles/2016/6/campussupport-systems-for-technical-researchers-navigating-big-data-ethics
- Volokh, E. (2003): The Mechanisms of the Slippery Slope. Harvard Law Review, 116(4), 1026–1137. doi: 10.2307/1342743
- Wang, Z., Chen, L., & Anderson, T. (2014): A framework for interaction and cognitive engagement in connectivist learning contexts. The International Review of Research in Open and Distance Learning, 15(2), http://www.irrodl.org/index.php/irrodl/article/view/1709/2838
- Watters, A. (2015): Top Ed-Tech Trends of 2015: The Compulsion for Data. Hackeducation, 16 Diciembre, http://hackeducation.com/2015/12/16/trends-data
- Weller, M. (2015): MOOCs and the Silicon Valley Narrative. Journal of Interactive Media in Education, 2015(1), pp. 1–7. doi: http://doi.org/10.5334/jime.am
- Westervelt, E. (2015): Meet The Mind-Reading Robo Tutor In The Sky. nprEd, 13 Octubre, http:// www.npr.org/sections/ed/2015/10/13/437265231/meet-the-mind-reading-robo-tutor-in-the-sky
- Wilkowski, J., Deutsch, A., & Russell, D. M. (2014): Student skin and goal achievement in the mapping with Google MOOC. Proceedings of the first ACM Conference on Learning@Scale, pp. 3–10, ACM, New York.
- Winker, P., & Gilli, M. (2004): Application of optimization heuristics to estimation and modeling problems. Computational Statistics and Data Analysis, 47(2), pp. 211–223.