Inhibición de la α-glucosidasa mediante flavonoides de origen natural como vía de control en el desarrollo de diabetes mellitus

  1. Rincón Silva, Juan David 1
  2. Rincon-Silva, Nelson Giovanny 2
  3. Acosta Vargas, Jairo Steffan 3
  1. 1 Universidad Pedagógica Nacional
    info

    Universidad Pedagógica Nacional

    Ciudad de México, México

    ROR https://ror.org/023m5rq87

  2. 2 Universitat de les Illes Balears
    info

    Universitat de les Illes Balears

    Palma, España

    ROR https://ror.org/03e10x626

  3. 3 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

Journal:
Biociencias

ISSN: 2390-0512

Year of publication: 2019

Volume: 14

Issue: 2

Pages: 129-148

Type: Article

DOI: 10.18041/2390-0512/BIOCIENCIAS.2.6026 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Biociencias

Sustainable development goals

Abstract

Diabetes Mellitus is a chronic metabolism disorder that leads to an abnormal increase in plasma glucose levels, as a result of the unbalanced production of insulin and/or the insensitivity to the effect of this hormone on the transduction of signals from cell receptors. These metabolic changes are accompanied by changes in the metabolism of carbohydrates, lipids and proteins and this disorder could lead to deterioration of various organs such as blindness and is even involved in causes of death. Most of the complications of Type 2 Diabetes in patients are due to hyperglycemia as their main cause. One of the effective strategies for the management of type 2 diabetes is the inhibition of the hydrolysis of complex polysaccharides by pancreatic α-amylase and the limitation of glucose absorption by inhibiting the α-glucosidase enzyme. In this sense, a review of α-glucosidase, its mechanism of action has been carried out and a possible route of inhibition by natural flavonoids is presented.

Bibliographic References

  • Stojkovic D, Smiljkovic M, Ciric A, Glamoclija J, Van Griensven L, Ferreira ICFR, et al. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African J Bot. 1 de enero de 2019;120:100-3.
  • Kim DJ, Kang YH, Kim KK, Kim TW, Park JB, Choe M. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutr Res Pract. 1 de junio de 2017;11(3):180-9.
  • Huang Q, Chai WM, Ma ZY, Ou-Yang C, Wei QM, Song S, et al. Inhibition of α-glucosidase activity and non-enzymatic glycation by tannic acid: Inhibitory activity and molecular mechanism. Int J Biol Macromol. 1 de diciembre de 2018;141:358-68.
  • Wen H, Tang B, Stewart AJ, Tao Y, Shao Y, Cui Y, et al. Erythritol Attenuates Postprandial Blood Glucose by Inhibiting α-Glucosidase. J Agric Food Chem. 14 de febrero de 2018;66(6):1401-7.
  • Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Vol. 86, Bioorganic Chemistry. Academic Press Inc.; 2019. p. 305-15.
  • Ghani U, Nur-e-Alam M, Yousaf M, Ul-Haq Z, Noman OM, Al-Rehaily AJ. Natural flavonoid α-glucosidase inhibitors from Retama raetam: Enzyme inhibition and molecular docking reveal important interactions with the enzyme active site. Bioorg Chem. 1 de junio de 2019; 87:736-42.
  • Maghrani M, Michel J-B, Eddouks M. Hypoglycaemic activity ofRetama raetam in rats. Phyther Res. febrero de 2005; 19(2):125-8.
  • Hayet E, Maha M, Samia A, Mata M, Gros P, Raida H, et al. Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World J Microbiol Biotechnol. 10 de diciembre de 2008; 24(12):2933-40.
  • Nur-e-Alam M, Yousaf M, Parveen I, Hafizur RM, Ghani U, Ahmed S, et al. New flavonoids from the Saudi Arabian plant Retama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Org Biomol Chem. 2019 ; 17(5):1266-76.
  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 29 de diciembre de 2016; 5:e47.
  • Proença C, Freitas M, Ribeiro D, Oliveira EFT, Sousa JLC, Tomé SM, et al. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. J Enzyme Inhib Med Chem. diciembre de 2017; 32(1):1216-28.
  • Zeng L, Zhang G, Liao Y, Gong D. Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties. Food Funct. 14 de septiembre de 2016;7(9):3953-63.
  • Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959-81.
  • Suzuki Y, Aoki R, Hayashi H. Assignment of a of Bacillus cereus ATCC 7064 to an exo-oligo-1,6-glucosidase. Biochim Biophys Acta - Protein Struct Mol Enzymol. junio de 1982; 704(3):476-83.
  • Yamamoto K, Miyake H, Kusunoki M, Osaki S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. octubre de 2010;277(20):4205-14.
  • Kuriki T, Imanaka T. The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng. 1999; 87(5):557-65.
  • Svensson B. Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases. FEBS Lett . 28 de marzo de 1988; 230(1-2):72-6.
  • Hasegawa K, Kubota M, Matsuura Y. Roles of catalytic residues in alpha-amylases as evidenced by the structures of the product-complexed mutants of a maltotetraose-forming amylase. Protein Eng. octubre de 1999;12(10):819-24.
  • Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol. 30 de mayo de 1997; 269(1):142-53.
  • Machius M, Wiegand G, Huber R. Crystal Structure of Calcium-depletedBacillus licheniformisα-amylase at 2.2 Å Resolution. J Mol Biol. 3 de marzo de 1995; 246(4):545-59.
  • Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, et al. Substrate Recognition Mechanism of α-1,6-Glucosidic Linkage Hydrolyzing Enzyme, Dextran Glucosidase from Streptococcus mutans. J Mol Biol. mayo de 2008; 378(4):913-22.
  • Shen X, Saburi W, Gai Z, Kato K, Ojima-Kato T, Yu J, et al. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallogr Sect D Biol Crystallogr. 1 de junio de 2015; 71(6):1382-91.
  • Macgregor EA, ­Janec­ek S, Svensson B. Relationship of sequence and structure to speci¢city in the K-amylase family of enzymes. Biochim Biophys Acta. 2001;1546(1):1-20.
  • Lineweaver H, Burk D. The Determination of Enzyme Dissociation Constants. J Am Chem Soc. marzo de 1934; 56(3):658-66.
  • Welk B, McArthur E, Ordon M, Morrow SA, Hayward J, Dixon S. The risk of dementia with the use of 5 alpha reductase inhibitors. J Neurol Sci. 15 de agosto de 2017; 379:109-11.