A Functional Model for the Integration of Gains and Losses under Riskimplications for the Measurement of Subjective Value

  1. Ricardo G. Viegas 1
  2. Armando M. Oliveir 1
  3. Ana Garriga-Trillo 2
  4. Alba Grieco 1
  1. 1 University of Coimbra, Portugal
  2. 2 UNED, Madrid, Spain
Journal:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Year of publication: 2012

Issue Title: Applications of Functional Measurement in Psychology

Volume: 33

Issue: 3

Pages: 711-733

Type: Article

More publications in: Psicológica: Revista de metodología y psicología experimental

Abstract

In order to be treated quantitatively, subjective gains and losses (utilities/disutilities) must be psychologically measured. If legitimate comparisons are sought between them, measurement must be at least interval level, with a common unit. If comparisons of absolute magnitudes across gains and losses are further sought, as in standard definitions of loss aversion, a common known zero must be added to the common unit requirement. These measurement issues are typically glossed over in complex models of decision under risk. This paper illustrates how Functional Measurement (FM) affords ways of addressing them, given some conditions. It establishes a relative ratio model for the integration of gains and losses in a mixed gamble situation with independent outcome probabilities. It subsequently documents how this model yields functional estimates of gains and losses on a common unit scale with a known zero. The psychological significance of the found integration model is discussed, and some of its implications for measurement further explored across two studies.

Bibliographic References

  • Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46(11), 1497-1512.
  • Abdellaoui, M., Bleichrodt, H., & L'Haridon, O. (2008). A tractable method to measure utility and loss aversion in prospect theory. Journal of Risk and Uncertainty, 36, 245-266.
  • Abdellaoui, M., Bleichrodt, H., & Parashiv (2007). Measuring loss aversion under Prospect Theory: A parameter-free approach. Management Science, 53,1659-1674.
  • Anderson, N. H. (1981). Foundations of information integration theory. New York: Academic Press.
  • Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press.
  • Anderson, N. H. (1991). Cognitive theory of judgment and decision. In N. H. Anderson (Ed.). Contributions to information integration theory. Vol. 1: Cognition (pp. 105-142). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Anderson, N. H. (1992). Integration psychophysics and cognition. In D. Algom (Ed.). Psychophysical approaches to cognition (pp. 13-113). Amsterdam: Elsevier Science Publishers.
  • Anderson, N. H. (1996). A functional theory of cognition. New Jersey: Lawrence Erlbaum Associates.
  • Anderson, N. H. (2001). Empirical Direction in Design and Analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Anderson, N. H. (2008). Unified Social Cognition. Psychology Press.
  • Anderson, N. H., & Schlottmann, A. (1991). Developmental study of personal probability. Contributions to information integration theory: Vol. III. Developmental (pp. 111-134). Hillsdale, NJ: Erlbaum.
  • Anderson, N. H., & Shanteau, J. C. (1970). Information integration in risky decision making Journal of Experimental Psychology, 84, 441-451.
  • Bernoulli, D. (1738/1954). Expositions of a new theory of the measurement of risk. Econometrica, 22, 23-36.
  • Brooks, P. & Zank, H. (2005). Loss averse behavior. Journal of Risk and Uncertainty, 31(3), 301-325.
  • Edwards, W. (1955). The predictions of decisions among bets. Journal of Experimental Psychology, 50, 201-214.
  • Fennema, H., & van Assen, M. A. (1998). Measuring the utility of losses by means of the tradeoff method. Journal of Risk and Uncertainty, 17, 277-295.
  • Fox, C. R. & Poldrack, R. A. (2009). Prospect theory and the brain. In P. W. Glimcher, C. F. Camerer, E. Fehr, & R. A. Poldrack. Neuroeconomics: Decision making and the brain (pp. 145-174) Amsterdam: Academic Press.
  • Hershey, J., Kunreuther, H. & Schoemaker, P. (1982). Sources of bias in assessment procedures for utility function, Management Science, 28(8), 936-953.
  • Hershey, J. & Shoemaker, P. (1985). Probability versus certainty equivalence methods in utility measurement: Are they equivalent? Management Science, 31(10), 1213-1231.
  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 4, 263-291.
  • Köberlling, V., & Wakker, P. P. (2005). An index of loss aversion. Journal of Economic Theory, 122, 119-131.
  • Lopes, L. L. (1996). When time is of the essence: Averaging, aspiration, and the short run. Organizational Behavior and Human Decision Processes, 65(3), 179-186.
  • Lopes, L. L., & Oden, G. C. (1999). The role of aspiration level in risky choice: A comparison of Cumulative Prospect Theory and SP/A theory. Journal of Mathematical Psychology, 43, 286-313.
  • Lynch, J. G. & Cohen, J. L. (1978). The use of subjective expected utility theory as an aid to understand variables that influence helping behavior. Journal of Personality and Social Psychology, 36(10), 1138-1151.
  • Masin, S. C. (2004). Tests of functional measurement theory for multiplicative models. In A. M. Oliveira, M. Teixeira, G. F. Borges, & M. J. Ferro (Eds.). Fechner Day 2004. Proceedings of the 20th Annual Meeting of the International Society for Psychophysics (pp. 447-452). Coimbra, Portugal: The International Society for Psychophysics.
  • McCord, M. R., & de Neufville, R. (1986). Lottery equivalents. Reduction of the certainty effect problem in lottery assessment. Management Science, 32(1), 56-60.
  • Rabin, M. (2000). Risk Aversion and Expected-utility Theory: A Calibration Theorem, Econometrica, 68, 1281-1292.
  • Savage, L. J. (1954). The Foundations of Statistics. New York: Wiley.
  • Schlottmann, A. (2000). Children ́s judgments of gambles: A disordinal violation of additive utility. Journal of Behavioral Decision Making, 13, 77-89.
  • Schlottmann, A. (2001). Children ́s Probability Intuitions: Understanding the expected value of complex games. Child Development, 72(1), 103-122.
  • Schlottmann, A., & Anderson, N. H. (1994). Children's judgments of expected value. Developmental Psychology, 30(1), 56-66.
  • Shanteau, J. (1974). Component processes in risky decision making. Journal of Experimental Psychology, 103(4), 680-691.
  • Shanteau, J. (1975). An information integration analysis of risky decision making. In M. F. Kaplan and S. Schwartz (Eds.), Human judgment and decision processes (pp. 109-137). New York: Academic Press.
  • Teixeira, N. S., & Oliveira, A. M. (2008). A perceptual-cognitive dividing model for the integration of velocity and traveled distance of a moving target by localization responses. In B. A. Schneider and B. M. Ben-David (Eds.). Fechner Day 2008: Proceedings of the 24th Annual Meeting of the International Society for Psychophysics (pp. 99-105). Toronto, Canada: The International Society for Psychophysics.
  • Troutman, C. M., & Shanteau, J. (1976). Do consumers evaluate products by adding or averaging attribute information? Journal of Consumer Research, 3, 101-106.
  • Tversky, A. & Kahneman, D. (1991). Loss aversion in riskless choice: A reference dependent model, Quarterly Journal of Economics, 107(4), 1039-1061.
  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297-323.
  • Viegas, R. G., Oliveira, A. M., & Garriga-Trillo, A. (2009). A relative ratio model for the integration of gains and losses in a mixed regular roulette-type game. In M. Elliott, S. Antonijecic, S. Berthaud, P. Mulcahy, B. Bargary, C. Martyn, & M. Schmidt (Eds.). Fechner Day 2009: Proceedings of the 25th Annual Meeting of the International Society for Psychophysics (pp. 545-550). Galway, Ireland: The International Society for Psychophysics.
  • Viegas, R. G., Oliveira, A. M., & Garriga-Trillo, A. (2010). Loss aversion and the locus of nonlinearity in decision under risk: A test between Prospect Theory and SP/A theory with functional measurement. In A. Bastianelli & G. Vidotto (Eds.). Fechner Day 2010: Proceedings of the 26th Annual Meeting of the International Society for Psychophysics (pp. 345-350). Padua, Italy: The International Society for Psychophysics.
  • Wakker, P. P., & Deneffe, D. (1996). Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42(8), 1131-1150.
  • Weiss, D. (2006). Analysis of variance and functional measurement: A practical guide. Oxford: Oxford University Press.
  • Zalinski, J., & Anderson, N. H. (1987). AVERAGE Program & Manual. San Diego: University of California.