Predicting the Tide of the PandemicAn In-Depth Analysis of Forecasting Models for COVID-19 in Cantabria
- Alberto Lezcano Lastra 1
- Gonzalo Llamosas García 2
- Alejandro López Cagigas 1
- Francisco Javier Parra Rodríguez 3
- 1 Government of Cantabria
-
2
Universidad de Málaga
info
-
3
Universidad Nacional de Educación a Distancia
info
ISSN: 1889-3805
Año de publicación: 2023
Volumen: 39
Número: 2
Páginas: 36-49
Tipo: Artículo
Otras publicaciones en: BEIO, Boletín de Estadística e Investigación Operativa
Objetivos de desarrollo sostenible
Resumen
Amidst the COVID-19 pandemic, astute public health interventions, including mobility constraints, are paramount. The bedrock of such strategies lies in the precision of forecasting models. Harnessing data from the Cantabrian Health Service, this study critically evaluates and contrasts time series analysis and cutting-edge machine learning techniques in predicting 30-day COVID-19 case trajectories. Additionally, it demystifies the technological scaffolding and methodologies of the Cantabrian Institute of Statistics’ web portal for streamlined collation and display of socio-health indicators. The analysis underscores the indispensability and acumen of predictive modeling in steering agile responses to public health crises.
Referencias bibliográficas
- Aditya Satrio, CB., W. Darmawan, B. Unrica Nadia, and N. Hanafiah. 2021. “Time Series Analysis and Forecasting of Coronavirus Disease in Indonesia Using ARIMA Model and PROPHET.” Procedia Computer Science 179: 524–32. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.036.
- Angular. 2023. “Angular: One Framework: Mobile and Desktop.” 2023. https://angular.io/.
- Assad, D. B. N., J. Cara, and M. Ortega-Mier. 2023. “Comparing Short-Term Univariate and Multivariate Time-Series Forecasting Models in Infectious Disease Outbreak.” Bulletin of Mathematical Biology 85 (9). https://doi.org/10.1007/s11538-022-01112-5.
- Cao, L., H. Liu, J. Li, X. Yin, Y. Duan, and J. Wang. 2020. “Relationship of Meteorological Factors and Human Brucellosis in Hebei Province, China.” Sci Total Environ.
- Ceylan, Z. 2020. “Estimation of COVID-19 Prevalence in Italy, Spain, and France.” Sci Total Environ. https://doi.org/10.1016/j.ijid.2018.07.003.
- Chakraborty, T., and I. Ghosh. 2020. “Real-Time Forecasts and Risk Assessment of Novel Coronavirus (COVID-19) Cases: A Data-Driven Analysis.” Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2020.109850.
- Chart.js. 2023. “Chart.js: Simple yet Flexible JavaScript Charting Library for the Modern Web.” 2023. https://www.chartjs.org/.
- Cover, Thomas M., and Peter E. Hart. 1967. “Nearest Neighbor Pattern Classification.” IEEE Transactions on Information Theory, no. 1: 21–27. https://doi.org/10.1109/TIT.1967.1053964.
- Firebase. 2023. “Firebase Products.” 2023. https://firebase.google.com/products-build.
- Gao, Xiaoyang, Yeting Xia, Xiaofang Liu, Yinlan Xu, Pengyang Lu, Zhipeng Dong, Jing Liu, and Gaofeng Liang. 2023. “A Perspective on SARS-CoV-2 Virus-Like Particles Vaccines.” International Immunopharmacology 115: 109650. https://doi.org/10.1016/j.intimp.2022.109650.
- Github. 2023. “Github: Let’s Built from Here.” 2023. https://github.com/.
- He, Z., and H. Tao. 2018. “Epidemiology and ARIMA Model of Positive-Rate of Influenza Viruses Among Children in Wuhan, China. A Nine-Year Retrospective Study.” Int J Infect Dis. https://doi.org/10.1016/j.ijid.2018.07.003.
- Kam Ho, T. 1995. “Random Decision Forests.” In Proceeding of 3rd International Conference on Document Analysis and Recognition, 1:278–82. https://doi.org/10.1109/ICDAR.1995.598994.
- Kwekha-Rashid, A. S., H. N. Abduljabbar, and B. Alhayani. 2021. “Coronavirus Disease (COVID-19) Cases Analysis Using Machine-Learning Applications.” Appl Nanosci. https://doi.org/https://doi.org/10.1007/s13204-021-01868-7.
- Liu, Q., X. Liu, B. Jiang, and W. Yang. 2011. “Forecasting Incidence of Hemorrhagic Fever with Renal Syndrome in China Using ARIMA Model.” BMC Infect Dis 11 (1). https://doi.org/10.1186/1471-2334-11-218.
- “Material Design.” 2023. 2023. https://material.io/design/.
- Posit. 2023. “Posit: A Cloud Platform for r Studio.” 2023. https://login.rstudio.cloud/.
- Python. 2023. “Python, a Programming Language That Lets You Work Quickly and Integrate Systems More Effectively.” 2023. https://www.python.org/.
- React. 2023. “React: A Javascript Library for Building User Interfaces.” 2023. https://reactjs.org/.
- Rismanbaf, A. 2020. “Potential Treatments for COVID-19: A Narrative Literature Review.” Arch Acad Emerg Med 8 (1).
- Roy, S., G. S. Bhunia, and P. K. Shit. 2021. “Spatial Prediction of COVID-19 Epidemic Using ARIMA Techniques in India.” Model. Earth Syst. Environ. 7: 1385–91. https://doi.org/https://doi.org/10.1007/s40808-020-00890-y.
- Sala, X. 2021. “Angular Vs React Vs Vue Demanda de Empleo (2015-2018).” 2021. https://www.jobfluent.com/es/blog/angular-vs-react-una-evolucion-de-la-demanda-de-empleo.
- Silverman, B. W., and M. C. Jones. 1989. “E. Fix and j.l. Hodges (1951): An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges (1951).” International Statistical Review / Revue Internationale de Statistique 57 (3): 233–38. https://doi.org/10.2307/1403796.
- Sujath, R., JM. Chatterjee, and AE. Hassanien. 2020. “A Machine Learning Forecasting Model for COVID-19 Pandemic in India.” Stochastic Environmental Research and Risk Assessment 34: 959–72. https://doi.org/https://doi.org/10.1007/s00477-020-01827-8.
- vue. 2023. “Vue: The Progressive Javascript Framework.” 2023. https://vuejs.org/