Impact of graphene functionalization on CuO cluster behavior: insights from molecular dynamics
- Roldán-Matilla, Miriam 2
- Cerpa-Naranjo, Arisbel 1
- Lado-Touriño, Isabel 1
- 1 Department of Engineering, School of Architecture, Engineering, Science and Computing, European University, Villaviciosa de Odón, 28670 Madrid, Spain.
- 2 Professional Formation Centre, European University of Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
ISSN: 3065-9736
Year of publication: 2025
Volume: 2
Issue: 1
Type: Article
Abstract
This study explores how small clusters of copper oxide (CuO) interact with different graphene-based materials using molecular dynamics (MD) simulations. The research primarily aims to understand how graphene oxidation and the modification of the graphene surface with polyethylene glycol (PEG) chains influence the strength and dynamics of these interactions. Molecular models used include pristine graphene (PG), low-oxidized graphene oxide (GOL), high-oxidized graphene oxide (GOH), and PEGylated graphene oxide (GOH-PEG). Simulations reveal that cluster diffusion behavior varies with the surface characteristics of each graphene material. Specifically, clusters on PG surfaces exhibit higher mobility, whereas functionalized surfaces, especially PEGylated GO, significantly restrict cluster mobility due to stronger interactions. These findings correlate with calculated interaction energies, showing that increased cluster dynamics are associated with lower interaction energies. The analysis of the mean squared displacement (MSD) over time reinforces these conclusions, revealing that the cluster exhibits subdiffusive behavior, a hallmark of movement in environments that constrain particle displacement. This study offers valuable insights into the molecular mechanisms influencing metal nanocluster interactions and dynamic behavior on graphene-based materials, which is essential for advancing efficient new materials in biomedical applications.
Bibliographic References
- Fu, (2017), Adv Mater, 29, 10.1002/adma.201603610
- Banerjee, (2018), Interface Focus, 8, pp. 20170056, 10.1098/rsfs.2017.0056
- Karaca, (2023), Mater Today Commun, 37, pp. 107054, 10.1016/j.mtcomm.2023.107054
- Kumar, (2023), Mater Today Chem, 33, pp. 101750, 10.1016/j.mtchem.2023.101750
- Farjadian, (2020), Chem Sheet, 5, pp. 10200, 10.1002/slct.202002501
- Hoseini-Ghahfarokhi, (2020), Int J Nanomed, 15, pp. 9469, 10.2147/IJN.S265876
- Gopal, (2023), Biosensors, 13, 10.3390/bios13040488
- Amir, (2020), J Ind Eng Chem, 83, pp. 1, 10.1016/j.jiec.2019.11.029
- Fritea, (2018), J Electroanal Chem, 830–831, pp. 63, 10.1016/j.jelechem.2018.10.015
- Perdikaki, (2016), ACS Appl Mater Interfaces, 8, pp. 27498, 10.1021/acsami.6b08403
- Pandit, (2021), ChemPhysChem, 22, pp. 250, 10.1002/cphc.202000769
- Alegret, (2017), Curr Med Chem, 24, pp. 529, 10.2174/0929867323666161216144218
- Azam, (2012), Int J Nanomed, 7, pp. 6003, 10.2147/IJN.S35347
- Biswas, (2021), J Mater Sci Mater Med, 32, pp. 151, 10.1007/s10856-021-06612-9
- Tkach, (2020), ACS Appl Nano Mater, 36, pp. 5593, 10.1021/acsanm.0c00852
- Jannesari, (2020), ACS Appl Mater Interfaces, 12, pp. 35813, 10.1021/acsami.0c05732
- Xie, (2020), Carbohydr Polym, 229, pp. 115456, 10.1016/j.carbpol.2019.115456
- Li, (2017), tomato. RSC Adv, 7, pp. 38853, 10.1039/C7RA05520J
- Sarkar, (2020), Appl Organomet Chem, 34, pp. e5646, 10.1002/aoc.5646
- Li, (2021), J Mater Chem B, 9, pp. 9324, 10.1039/D1TB01912K
- Zhao, (2015), Electrochim Acta, 176, pp. 1272, 10.1016/j.electacta.2015.07.143
- Singh, (2020), Biosens Bioelectron, 168, 10.1016/j.bios.2020.112557
- Esfahani, (2024), FlatChem, 47, 10.1016/j.flatc.2024.100716
- Mendonça, (2016), Mol Pharm, 13, pp. 3913, 10.1021/acs.molpharmaceut.6b00696
- Chen, (2014), Biomaterials, 35, pp. 4986, 10.1016/j.biomaterials.2014.02.032
- Dolatkhah, (2021), Nanomedicine, 16, pp. 2155, 10.2217/nnm-2021-0094
- Wang, (2019), J Mater Chem B, 7, pp. 7406, 10.1039/C9TB00630C
- Luo, (2022), Talanta, 238, pp. 122992, 10.1016/j.talanta.2021.122992
- Makkar, (2021), RSC Adv, 11, pp. 27897, 10.1039/D1RA04876G
- Martínez-Vargas, (2022), Materials, 15, 10.3390/ma15134710
- Zhang, (2015), Adv Sci, 2, pp. 1500101, 10.1002/advs.201500101
- García-Rodríguez, (2017), Appl Surf Sci, 412, pp. 146, 10.1016/j.apsusc.2017.03.239
- Alimohammadi, (2020), Int J Nanomed, 15, pp. 6887, 10.2147/IJN.S265140
- Puigpelat, (2019), Langmuir, 35, pp. 16661, 10.1021/acs.langmuir.9b03008
- Sriram, (2015), Mater Sci-Medzg, 21, pp. 173, 10.5755/j01.ms.21.2.6459
- Roldán-Matilla, (2025), Appl Surf Sci, 688, pp. 162430, 10.1016/j.apsusc.2025.162430
- Hoover, (1985), Phys Rev A, 31, pp. 1695, 10.1103/PhysRevA.31.1695
- Nosé, (1984), Mol Phys, 52, pp. 255, 10.1080/00268978400101201
- Sun, (1998), J Phys Chem B, 102, pp. 7338, 10.1021/jp980939v
- Sun, (1998), Comput Theor Polym Sci, 8, pp. 229, 10.1016/S1089-3156(98)00042-7
- Rigby, (1998), Polym Int, 44, pp. 311, 10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
- Peng, (1997), J Phys Chem A, 101, pp. 7243, 10.1021/jp964080y
- Qian, (2022), Molecules, 27, 10.3390/molecules27051611
- Savin, (2020), Phys E Low-Dimen Syst Nanostruct, 118, 10.1016/j.physe.2019.113937
- Zhao, (2007), J Phys Chem C, 111, pp. 10610, 10.1021/jp071775y
- Metzler, (2014), Phys Chem Chem Phys, 16, pp. 24128, 10.1039/C4CP03465A
- Lado-Touriño, (2021), Nanomaterials, 11, 10.3390/nano11061378
- Gervilla, (2020), J Phys Chem Lett, 11, pp. 8030, 10.1021/acs.jpclett.0c02375
- Zarshenas, (2021), Phys Chem Chem Phys, 23, pp. 13087, 10.1039/D1CP00522G
- Manade, (2015), Carbon, 95, pp. 525, 10.1016/j.carbon.2015.08.072