Invariantes diferenciales del fibrado de las referencias proyectivas de una variedad y el problema de equivalencia de cartan asociado

  1. Valdes Morales, Antonio
Zuzendaria:
  1. Jaime Muñoz Masqué Zuzendaria

Defentsa unibertsitatea: Universidad Complutense de Madrid

Defentsa urtea: 1994

Epaimahaia:
  1. Enrique Outerelo Domínguez Presidentea
  2. Eduardo Aguirre Dabán Idazkaria
  3. Emilio Bujalance García Kidea
  4. Pedro Luis García Pérez Kidea
  5. Pedro Martínez Gadea Kidea

Mota: Tesia

Teseo: 43271 DIALNET

Laburpena

EN LA PRIMERA PARTE DE ESTA MEMORIA SE ESTUDIA EL PROBLEMA DE EQUIVALENCIA DE G-ESTRUCTURAS, SE PRUEBA QUE PARA UNA AMPLIA GAMA DE G-ESTRUCTURAS ES POSIBLE ASOCIARLAS UNA CONEXION FUNCTORIAL QUE RESUELVE EL PROBLEMA DE EQUIVALENCIA REDUCIENDOLO A UN PROBLEMA DE EQUIVALENCIA DE TENSORES DEFINIDOS SOBRE UN ESPACIO VECTORIAL. EN LA SEGUNDA Y TERCERA PARTE SE ESTUDIA EL FIBRADO DE LAS REFERENCIAS PROYECTIVAS DE UNA VARIEDAD DIFERENCIABLE TANTO DESDE EL PUNTO DE VISTA TOPOLOGICO COMO DIFERENCIAL. EN LA CUARTA PARTE SE CALCULA EXPLICITAMENTE UNA BASE DE INVARIANTES ESCALARES DEL FIBRADO DE LAS REFERENCIAS PROYECTIVAS DE UNA VARIEDAD DE CUALQUIER DIMENSION Y EN CUALQUIER ORDEN DE DERIVACION. EN LA QUINTA PARTE SE RESUELVE EL PROBLEMA DE EQUIVALENCIA DE E. CARTAN PARA ESTE TIPO DE GEOMETRIA UTILIZANDOSE PARA ELLO LA BASE DE INVARIANTES CALCULADA EN EL CAPITULO ANTERIOR.