Desarrollo de un sistema automático de discriminación del campo visual glaucomatoso basado en un clasificador Neuro-Fuzzy

  1. J García-Feijoó
  2. EJ Carmona Suárez
  3. LM Gallardo
  4. M González Hernández
  5. A Fernández Vidal
  6. M González de la Rosa
  7. J Mira Mira
  8. J García Sánchez
Journal:
Archivos de la Sociedad Española de Oftalmologia

ISSN: 0365-6691

Year of publication: 2002

Volume: 77

Issue: 12

Pages: 669-676

Type: Article

DOI: 10.4321/S0365-66912002001200006 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Archivos de la Sociedad Española de Oftalmologia

Sustainable development goals

Abstract

Purpose: To provide a useful tool in the diagnosis of glaucoma by developing an automatic system for visual field classification based on neuro-fuzzy rules. Method: A total of 212 visual fields (OCTOPUS 123 program G1X), from 198 patients, were analysed: 61 normal (controls) and 151 with glaucomatous damage (49% with incipient damage, 29.1% with moderate damage, and 21.9% advanced). Inclusion criteria for glaucomatous patients were: Visual acuity >0.5, IOP < 20 mm Hg (with treatment), refraction <5 Dp and previous perimetric experience. Exclusion criteria: miotics, other ocular pathologies which could interfere with visual field examination, and for control subjects: visual acuity >0.5, no ocular pathologies and refraction < 5 Dp. A neuro-fuzzy classifier (NEFCLASS) is a system consisting in a series of fuzzy rules, obtained after a learning process, which attempts to assign to each piece of data input its corresponding output. Initially, the characteristics of each data input are established (input units). Then, based on previous knowledge, a set of rules are defined, and finally, the learning process allows the optimisation of the classifier parameters to generate an output. Results: Input units were defined by using the mean defects calculated at specific areas of the visual field; five rules were then created which generated sensitivity and specificity values of 96.0% and 93.4% respectively. Conclusions: The use of neuro-fuzzy rules for visual field classification in normal vs glaucomatous can provide results which can match the quality of those obtained with other techniques such as discriminatory analysis or neural networks.

Bibliographic References

  • Quigley, HA. (1996). Number of people with glaucoma worldwide. Br J Ophthalmol. 80. 389-393
  • Asman, P, Heijl, A. (1992). Glaucoma Hemifield Test: Automated visual field evaluation. Arch Ophthalmol. 110. 812-819
  • Antón, A, Maquet, JA, Mayo, A, Tapia, J, Pastor, JC. (1997). Value of logistic discriminant analysis for interpreting initial of visual field defects. Ophthalmology. 104. 525-531
  • Goldbaum, MH, Sample, PA, White, H, Colt, B, Raphaelian, P, Fechtner, RD. (1994). Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 35. 3362-3373
  • Henson, DB, Spenceley, SE, Bull, DR. (1996). Spatial classification of glaucomatous visual field loss. Br J Ophthalmol. 80. 526-531
  • Brigatti, L, Hoffman, D, Caprioli, J. (1996). Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol. 121. 511-521
  • Brigatti, L, Nouri-Mahdavi, K, Weitzman, M, Caprioli, J. (1997). Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol. 115. 725-728
  • Keating, D, Mutlukan, E, Evans, A, Mc Garvie, J, Damato, B. (1993). A back propagation neural network for the classification of visual field data. Phys Med Biol. 38. 1263-1270
  • Mutlukan, E, Keating, D. (1994). Visual field interpretation with a personal computer based neural network. Eye. 8. 321-323
  • Henson, DB, Spenceley, SE, Bull, DR. (1997). Artificial neural network analysis of noisy visual field data in glaucoma. Artif Intell Med. 10. 99-113
  • Lietman, T, Eng, J, Katz, J, Quigley, HA. (1999). Neural networks for visual field analysis: how do they compare with other algorithms?. J Glaucoma. 8. 77-80
  • Zadeh, LA. (1969). Proc. Int. Symp.: Biocybernetics of the Central Nervous System. Boston. Little, Brown & Co.
  • Teodorescu, HL, Kandel, A, Jain, LC. (1999). Fuzzy Logic and Neuro-fuzzy Systems in Medicine. CRC Press. London.
  • Herrmann, CS. A Hybrid Fuzzy-Neural Expert System for Diagnosis. IJCAI. 1995.
  • Peña-Reyes, CA, Sipper, M. Evolving fuzzy rules for breast cancer diagnosis. 2. Proc Int Symp on Nonlinear Theory and Applications (NOLTA'98). Lausanne. 1998.
  • Blekas, K, Stafylopatis, A, Kontoravdis, D, Likas, A, Karakitsos, P. (1998). Cytological Diagnosis Based on Fuzzy Neural Networks. Journal of Intelligent Systems. 8. 1-2
  • Ayoubi, M, Isermann, R. (1997). Neuro-fuzzy systems for diagnosis. Fuzzy sets and Systems. 89. 289-307
  • Accornero, N, Capozza, M. (1995). OPTONET: neural network for visual field diagnosis. Med Biol Eng Comput. 33. 223-226
  • González de la Rosa, M, González Hernández, M, Aguilar Estévez, J, Abreu Reyes, A, Pareja Ríos, A. (2002). Clasificación topográfica del campo visual glaucomatoso. Arch Soc Esp Oftalmol. 77. 87-94
  • Nauck, D, Kruse, R. NEFCLASS: A Neuro-Fuzzy Approach for the Classification of Data. Applied Computing 1995. ACM Symposium on Applied Computing. Nashville. 1995.
  • Decloedt, L, Osorio, F, Amy, B. (1996). Proceedings of the AISB'96: Workshop on Rule Extraction from Trained Neural Nets, QUT. Springer. Brighton.
  • Setiono, R, Kheng, W. (2000). An Algorithm for Fast Extraction of Rules from Neural Networks. Applied Intelligence. 12. 1-2
  • Nauck, D, Kruse, R. How the Learning of Rule Weights Affects the Interpretability of Fuzzy Systems. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE´98). Anchorage AK. 1988.