Eficiencia de las técnicas de medición del riesgo de mercado ante situaciones de crisis
- González Sánchez, Mariano
- Nave Pineda, Juan M.
ISSN: 0210-2412
Datum der Publikation: 2010
Nummer: 145
Seiten: 41-64
Art: Artikel
Andere Publikationen in: Revista española de financiación y contabilidad
Bibliographische Referenzen
- ANGELIDIS, T.; BENOS, A., y DEGIANNAKIS, S. 2005. The use of GARH models in VaR estimation. Statistical Methodology 2:49-57.
- BALI, T., y THEODOSSIOU, P. 2007. A conditional-sgt-var approach with alternative garch models. Annals of Operations Research 151:241-267.
- BAO, Y.; LEE, T.-H., y SALTOGLU, B. 2006. Evaluating predictive performance of value-at-risk models in emerging markets: a reality check. Journal of Forecasting 25:101-128.
- BAO, Y.; LEE, T.-H; SALTOGLU, B., y ULLAH, A. 2004. Bias of value-at-risk model. Finance Research Letters 1:241-249.
- BARONE-ADESI, G.; GIANNOPOULOS, K., y VOSPER, L. 2000. Filtering Historical Simulation Backtest Analysis. Working Paper, University of Westminster.
- BERKOWITZ, J., y O'BRIEN, J. 2002. How Accurate are Value-at-Risk Models at Commercial Banks, Journal of Finance 57(3):1093-1111.
- BERKOWITZ, J.; O'BRIEN, J.; CHRISTOFFERSEN, P., y PELLETIER, D. 2006. Evaluating value-at-risk models with desk-level data. Working Paper Series 010 Department of Economies, North Carolina State University.
- BILLIO, M., y SARTORE, D. 2003. Stochastic Volatility Models: A Survey with Applications to Option Pricing and Value at Risk. West Sussex, UK: John Wiley.
- BOLLERSLEV, T., y WOOLDRIDGE, J. M. 1992. Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances. Econometric Review 11:143-172.
- BOUDOUKH, J.; RICHARDSON, M., y WHITELAW, R. 1998. The Best of Both Worlds. Risk 11(5):64-67.
- BRUMMELHUIS, R., y KAUFMANN, R. 2007. Time Scaling of Value-at-Risk in GARCH (1, 1) and AR (1) - GARCH (1, 1) Processes. The Journal of Risk 9(4):39-94.
- CHAN, N. H.; DENG, S. J.; PENG, L., y XIA, Z. 2007. Interval estimation for the conditional value at risk based on garch models with heavy tailed innovations. Journal of Econometrics 137:556-576.
- CONT, R. 2001. Empirical properties of assets returns: stylized facts and statistical issues. Quantitative Finance, 1:223-236.
- DIEBOLD, F. X.; HICKMAN, A.; INQUE, A., y SCHUERMANN, T. 1998. Scale models. Risk 11:104-107.
- DROST, F. C., y NIJMAN, T. T. 1993. Temporal aggregation of GARCH processes. Econometrica, 61, 909-927.
- EBERLEIN, E.; KALLSEN, J., y KRISTEN, J. 2003. Risk management based on stochastic volatility. Journal of Risk 5:19-44.
- EMBRECHTS, P.; KLÜPPELBERG, C., y MIKOSCH, T. 1997. Modelling extremal events for insurance and fi nance. New York: Springer.
- HERNÁNDEZ SÁNCHEZ, M. 2003. El efecto nivel de riesgo en las metodologías VaR. Revista Española de Financiación y Contabilidad XXXII(119):1013-1051.
- HILL, B. M. 1975. A simple general approach to inference about the tail of a distribution. Annals of Statistics 3:1163-1174.
- HOSKING, J. R. M.; WALLIS, H., y WOOD, E. 1985. Estimation of Generalized Extreme Value Distribution by Method of Probability Weighted Moments. Technometrics 27:251-261.
- JOHSON, N.; KOTZ, S., y BALAKRISHNAN, N. 1994. Continuous Univariate Distritutions. 2nd Edition, Vol. 1, New York: John Wiley.
- JORION, P. 2000. Value at Risk: The New Benchmark for Controlling Market Risk. 2nd Edition, New York: McGraw Hill.
- JU, X., y PEARSON, N. D. 1999. Using value-at-risk to control risk taking: How wrong can you be? Journal of Risk 1:5-36.
- KRAUSE, A. 2003. Exploring the limitations of value at risk: How good is it in practice? Journal of Risk Finance 4(2):19-28.
- KUESTER, K.; MITTNIK, S., y PAOLELLA, M. 2006. Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics 4 (1), 53-89.
- LIMA, R., y NERI, B. 2007. Comparing value-at-risk methodologies. Brazilian Review of Econometrics 27, 1-25.
- MCNEIL, A., y FREY, R. 2000. Estimation of tail-related risk measures for heterocedastic fi nancial time series: an extreme value approach. Journal of Empirical Finance 7:271-300.
- MITTNIK, S., y PAOLELLA, M. 2000. Conditional density and value-at-risk prediction of Asian currency exchange rates. Journal of Forecasting 19:313-333.
- PEROTE, J. 2003. Value at Risk of non-normal portfolios. Revista Española de Financiación y Contabilidad 115:290-310.
- POWNALL, R., y KOEDIJK, K. 1999. Capturing downside risk in fi nancial markets: the case of the asian crisis. Journal of International Money and Finance 18:853-870.
- ROCKAFELLAR, R. T., y URYASEV, S. 2002. Conditional Value at Risk for General Loss Distributions, Journal of Banking and Finance 26(7):1443-1471.
- SADORSKY, P., 2005. Stochastic volatility forecasting and risk management. Applied Financial Economics 15, 121-135.
- SARMA, M., T. S., y SHAH, A. 2003. Selection of value at risk models. Journal of Forecasting 22, 337-358.
- VAN DEN GOORBERGH, R. W. J. 1999. Value at Risk analysis and least squares tail index estimation. Research Memorandum WO & E, no. 578. Amsterdam: De Nederlandsche Bank.
- VLAAR, P. J. G. 2000. Value at risk models for dutch bond portfolios. Journal of Banking and Finance 24 (7), 1131-1154.