Un programa gauss para simular distribuciones no normales multivariadas
- San Luis Costas, Concepción
- Sánchez Bruno, Juan Alfonso
- Hernández Cabrera, Juan Andrés
ISSN: 0214-9915
Año de publicación: 1995
Volumen: 7
Número: 2
Páginas: 427-434
Tipo: Artículo
Otras publicaciones en: Psicothema
Resumen
Se presenta dos programas en GAUSS, que permite generar muestras de tamaño n y p variables con características de distribución en asimetría y apuntamiento definidos previamente por el usuario, a partir de la matriz de correlaciones de las variables implicadas, en base a los algoritmos de Fleishman (1978) y Vale y Maurelli (1983).
Referencias bibliográficas
- Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and nonnormality. Unpublished PhD dissertation, University of Groningen, Groningen. The Netherlands.
- Babakus, E., Ferguson, C.E., & Joreskog, K.G. (1987). The sensitivity of Confirmatory Maximum likelihood factor analysis to violations of measurement scale and distributional assumptions. Journal of Marketing Research. 24, 222-228.
- Chou, C.E, Bentler, P.M. & Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 47-357.
- Fleishman, A.(1978). A method for simulating non-normal distributions. Psychometrika, 43, 4, 521-531.
- Gauss Sistem Version 3.0. Aptech Systems, Inc.
- Sharma, S., Durvasula, S. & Dillon, W.R. (1989). Some results on the behavior of alternate covariance structure estimation procedures in the presence on non-normal data. Journal of Marketing Research, 26, 214-221.
- Vale, D. & Maurelli, V. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 3, 465-471.