Optimization of stochastic global variance reduction techniques for Monte Carlo neutron transport with applications to the ITER geometry

  1. Pérez Fernández, Lucía
Dirigida por:
  1. Patrick Sauvan Director
  2. Francisco Ogando Serrano Codirector

Universidad de defensa: UNED. Universidad Nacional de Educación a Distancia

Fecha de defensa: 04 de mayo de 2016

Tribunal:
  1. José Manuel Perlado Martín Presidente/a
  2. Miguel Embid Segura Secretario/a
  3. Javier Sanz Gozalo Vocal

Tipo: Tesis

Resumen

En el ámbito del diseño de reactores nucleares de fusión, los estudios de neutrónica tienen una destacada importancia. Los neutrones liberados por las reacciones de fusión que tienen lugar en este tipo de reactores son altamente energéticos, y dicha energía será posteriormente aprovechada para generar energía eléctrica en futuras centrales eléctricas de fusión. Sin embargo, los efectos perniciosos causados por estos neutrones, como la capacidad de activar los materiales o su peligrosidad como radiación ionizante, requiere una adecuada caracterización de la distribución de los neutrones dentro del reactor. Para poder llevar a cabo una correcta evaluación de los flujos neutrónicos en en todo el reactor, es necesario transportar los neutrones por toda su geometría; considerando todas las interacciones de éstos con la materia a lo largo de su trayectoria. Los códigos de transporte basados en el método de Monte Carlo son ampliamente utilizados en la industria nuclear para este fin. No obstante, su aplicabilidad se ve limitada por las capacidades computacionales actuales. Con el fin de optimizar el transporte neutrónico existen varias técnicas (implementadas en los propios códigos de Monte Carlo) que reducen la varianza en el muestreo de las partículas, reduciendo a su vez el esfuerzo computacional. A pesar de todo, a la hora de caracterizar un sistema en todos los puntos del espacio, estas técnicas resultan insuficientes debido a la naturaleza local de las mismas. Así, en geometrías de grandes dimensiones en las que es necesario caracterizar a lo largo de todo el espacio ciertas funciones respuesta (como por ejemplo la dosis o el calor residual), los códigos de transporte basados en Monte Carlo requieren un gran esfuerzo computacional. Este problema se ve agravado cuando, además, existen materiales muy absorbentes y las partículas son en su mayoría absorbidas. En muchos de estos casos, realizar cálculos de transporte en un tiempo computacional asequible resulta imposible. Para solventar este problema, las técnicas de reducción de varianza global consideran todos los puntos de la geometría igualmente importantes, permitiendo un transporte homogéneo en términos del error relativo. Para generar los parámetros necesarios para la aplicación de reducción de varianza global, los métodos híbridos realizan cálculos previos del flujo neutrónico con códigos deterministas; estos parámetros son posteriormente empleados como entrada en una simulación de Monte Carlo (más precisa en geometrías complejas que los métodos deterministas). Actualmente existen varias técnicas que reducen la varianza de forma global, siendo el método híbrido FW-CADIS la técnica de referencia. El objetivo principal de esta tesis es implementar un método de reducción de varianza global para cálculos de transporte neutrónico realizados con el código de transporte MCNP (basado en el método de Monte Carlo), sin la necesidad de un código determinista. Para ello, en la primera parte de esta tesis se presenta un repaso de las principales técnicas de reducción de varianza global que existen actualmente para el transporte de neutrones. Se describen los puntos fuertes y las limitaciones de cada método y se hace especial hincapié en la técnica de van Wijk. Ésta metodología, puramente estocástica, presenta ciertos problemas para geometrías complejas con materiales muy absorbentes. Estos inconvenientes son estudiados y se proponen dos soluciones en función de los resultados obtenidos. La segunda parte de esta tesis consiste en aplicaciones de las técnicas propuestas así como del algoritmo original de van Wijk, usando dos geometrías diferentes. Para ello se propone en primer lugar el benchmark de ITER, una geometría simplificada que se emplea para la verificación de herramientas. Sobre este modelo, un caso análogo (sin reducción de varianza), el algoritmo de van Wijk y las modificaciones propuestas, son comparados en términos de optimización del tiempo computacional y del muestreo sobre toda la geometría. Además, se realiza una verificación de la fiabilidad de los métodos, comparando para ello el flujo neutrónico calculado en una región del espacio con el caso análogo de MCNP. La segunda geometría es más compleja y de mayores dimensiones; se emplea en este caso el modelo neutrónico del reactor fusión ITER. Se muestran sobre este modelo las mismas comparaciones de optimización realizadas en el benchmark. Además, los mapas provenientes de los dos métodos más optimizados son posteriormente empleados para realizar un cálculo de dosis en parada sobre el puerto ecuatorial del reactor. En esta tesis se proponen dos optimizaciones de técnicas de reducción de varianza global para el transporte con el código MCNP, sin la necesidad de emplear un código determinista para los cálculos previos. Las aplicaciones mostradas demuestran la consistencia en los resultados obtenidos cuando se comparan con una simulación análoga, así como la mejora en el tiempo computacional del transporte.