On a subvariety of the moduli space

  1. Cirre, Francisco Javier
Aldizkaria:
Revista matemática iberoamericana

ISSN: 0213-2230

Argitalpen urtea: 2004

Alea: 20

Zenbakia: 3

Orrialdeak: 953-960

Mota: Artikulua

DOI: 10.4171/RMI/411 DIALNET GOOGLE SCHOLAR

Beste argitalpen batzuk: Revista matemática iberoamericana

Laburpena

We give an explicit description of a non-normal irreducible subvariety of the moduli space of Riemann surfaces of genus 3 characterized by a non-cyclic group action. Defining equations of a family of curves representing non-normal points of this subvariety are computed. We also find defining equations of the family of hyperelliptic curves of genus 3 whose full automorphism group is C2 X C4. This completes the list of full automorphism groups of hyperelliptic curves.