Analysis of risks in a Learning Management System: A case study in the Spanish National University of Distance Education (UNED)

  1. Vázquez Cano, Esteban
  2. Sevillano García, María Luisa
Revista:
NAER: Journal of New Approaches in Educational Research

ISSN: 2254-7339

Año de publicación: 2015

Volumen: 4

Número: 1

Páginas: 62-68

Tipo: Artículo

DOI: 10.7821/NAER.2015.1.107 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: NAER: Journal of New Approaches in Educational Research

Objetivos de desarrollo sostenible

Resumen

En este artículo se presenta una investigación que explora la percepción de los riesgos que tienen estudiantes universitarios al usar un sistema de gestión del aprendizaje llamado "aLF" implementado por la Universidad Nacional de Educación a Distancia (UNED) para el desarrollo de sus estudios universitarios a distancia. El desarrollo de sistemas de gestión del aprendizaje exhaustivos para la práctica de la enseñanza-aprendizaje a distancia en el Espacio Europeo de Educación Superior (EEES) es un reto para todas las universidades europeas. Por eso, es necesario analizar no solo los beneficios que aportan dichos entornos, sino también los riesgos que perciben sus usuarios para mejorar así las metodologías docentes y diseñar mejor las interfaces de usuario. Con una metodología cuantitativa, comprobamos la opinión de 588 estudiantes sobre su percepción de los riesgos que hay al usar dicho sistema de gestión del aprendizaje para estudiar el grado universitario de Pedagogía. Los resultados muestran que los principales riesgos se concentran en dos dimensiones: en la dimensión 1 "básico o general", con una alta incidencia de "miedo a cometer errores" y de "desconocimiento del contenido del curso"; y en la dimensión 2 "circunstancias propias y ajenas a los estudiantes", en la que es importante remarcar los riesgos que no se pueden controlar directamente por los alumnos: "aviso de las autoridades de no desarrollar el programa", "aislamiento de los profesores" y "delegación del control"

Información de financiación

Financiadores

Referencias bibliográficas

  • Álvarez, M. C. (Ed.). (2001). Developing critical and imaginative thinking within electronic literacy. Newark, DE: International Reading Association.
  • Ananiadou, K., & Claro, M. (2009, September). 21st century skills and competencies for new millennium learners in OECD countries. NML country survey. In The New Millennium Learners International Conference, Brussels.
  • Artino, A. R. (2008). Understanding satisfaction and continuing motivation in an online course: An extension of social cognitive, control-value theory. In Annual meeting of the American Educational Research Association, New York, NY. Retrieved from http://www.sp.uconn.edu/~aja05001/comps/documents/AERA_2008_SEM_Artino_FINAL.pdf
  • Artino, A. R., & Stephens, J. M. (2007). Bored and frustrated with online learning? Understanding achievement emotions from a social cognitive, control-value perspective. Paper presented at the Annual meeting of the Northeastern Educational Research Association, Rocky Hill, CT. Retrieved from http://www.sp.uconn.edu/~aja05001/comps/documents/NERA-07_AchEmotions_Artino%2BStephens.pdf
  • Baker, E. (2003). Reflections on technology-enhanced assessment. Assessment in Education, 10(3), 421-425. doi: 10.1080/0969594032000148226
  • Brindley, J. E., Walti, C., & Blaschke, L. M. (2009). Creating effective collaborative learning groups in an online environment. International Review of Research in Open and Distance Learning, 10(3), 1-18.
  • Curtis, D. D., & Lawson, M. J. (2001). Exploring collaborative online learning. Journal of Asynchronous Learning Networks, 5(1), 21-34.
  • Daniels, P. (2009). Course Management Systems and Implications for Practice. International Journal of Emerging Technologies & Society, 7(2), 97-108.
  • Dirkx, J. M., & Smith, R. O. (2004). Thinking out of a bowl of spaghetti: Learning to learn in online collaborative groups. In T. S. Roberts (Ed.), Online collaborative learning: Theory and practice (pp. 132-159). Hershey, PA: Information Science Publishing. doi: 10.4018/978-1-59140-174-2.ch006
  • Do, S., & Schallert, D. (2004). Emotions and classroom talk: Toward a model of the role of affect in students’ experiences of classroom discussions. Journal of Educational Psychology, 96(4), 619-634. doi: 10.1037/0022-0663.96.4.619
  • Dodda, B. J., & Antonenkob, P. D (2012). Use of signaling to integrate desktop virtual reality and online learning management systems. Computers & Education, 59(4), 1099-1108. doi: 10.1016/j.compedu.2012.05.016
  • Ellis, R. (2009). A field guide to learning management systems. USA. American Society of Training and Development (ASTD).
  • Fletcher, G. H. (2007). Bloggers welcome here: Social networking tools appear poised to enter the school system. It’s a breakthrough long overdue. T H E Journal (Technological Horizons in Education), 34(11), 8.
  • Garrison, D., & Vaughan, N. (2008). Blended learning in higher education: Framework, principles, and guidelines. San Francisco, CA: John Wiley & Sons.
  • Georgina, D., & Olson, M. (2008). Integration of technology in higher education: A review of faculty self-perception. The Internet and Higher Education, 11, 1-8. doi: 10.1016/j.iheduc.2007.11.002
  • Glover, I., & Oliver, A. (2008). Hybridisation of Social Networking and Learning Environments. In J. Luca & E. Weippl (Eds.), Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications 2008 (pp. 4951-8). Chesapeake, VA: AACE.
  • Gómez, E., & Rodríguez-Marciel, C. (2012). PGDnet: a new problem-solving virtual learning environment. British Journal of Educational Technology, 43, 576–591. doi: 10.1111/j.1467-8535.2011.01224.x
  • Hahn, J. (2008). Born digital: Understanding the first generation of digital natives. Library Journal, 133(13), 105.
  • Handa, Y. (2003). A phenomenological exploration of mathematical engagement: Approaching an old metaphor anew. For the Learning of Mathematics, 23(1), 22-29.
  • Hickey, D. T., Moore, A. L., & Pellegrino, J. W. (2001). The motivational and academic consequences of elementary mathematics environments: Do constructivist innovations and reforms make a difference? American Educational Research Journal, 38, 611-652. doi: 10.3102/00028312038003611
  • Hrastinski, S. (2006). Introducing an informal synchronous medium in a distance learning course: How is participation affected? The Internet and Higher Education, 9, 117-131. doi: 10.1016/j.iheduc.2006.03.006
  • Jackson, L. A., Von Eye, A., Biocca, F. A., Barbatsis, G., Zhao, Y., & Fitzgerald, H. E. (2006). Does home Internet use Influence the academic performance of low income children? Developmental Psychology, 42, 429-435. doi: 10.1037/0012-1649.42.3.429
  • Järvenoja, H., & Järvelä, S. (2005). How students describe the sources of their emotional and motivational experiences during the learning process: A qualitative approach. Learning, 15, 465-480.
  • Kopcha, T. J. (2012). Teachers' perceptions of the barriers to technology integration and practices with technology under situated professional development. Computers & Education, 59(4), 1109-1121. doi: 10.1016/j.compedu.2012.05.014
  • Kreijns, K., Kirschner, P. A., & Jochems, W. (2002).The sociability of computer-supported collaborative learning environments. Journal of Education Technology & Society, 5(1), 822.
  • Macdonald, J., & Poniatowska, B. (2011). Designing the professional development of staff for teaching online: an OU (UK) case study. Distance Education, 32(1), 119-134. doi: 10.1080/01587919.2011.565481
  • Mandler, G. (1975). Mind and emotion. New York: Wiley.
  • Moyle, K. (2010). Building innovation: Learning with technologies. Australian Education Review, 56.
  • Park, S. Y., Nam, M.-W., & Cha, S. B. (2012). University students' behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43, 592-605. doi: 10.1111/j.1467-8535.2011.01229.x
  • Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students' self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105. doi: 10.1207/S15326985EP3702_4
  • Reigeluth, Ch. (2000). La teoría elaborativa: orientación para la toma de decisiones sobre el alcance y la secuenciación. In Ch. Reigeluth (Ed): Diseño de la instrucción. Teoría y modelos (pp. 449-480). Madrid: Aula XXI Santillana.
  • Roberts, T. S. (2005). Computer-supported collaborative learning in higher education: An introduction. In T. S. Roberts (Ed.), Computer-supported collaborative learning in higher education (pp. 2-3). Hershey, PA: Information Science Publishing. doi: 10.4018/978-1-59140-408-8
  • Rosen, A. (2009). E-Learning 2.0: Proven practices and emerging technologies to achieve results. New York, NY: American Management Association.
  • Rosen, Y, & Rimor, R. (2009). Using collaborative database to enhance students’ knowledge construction. Interdisciplinary Journal of E-Learning and Learning Objects, 5, 187-195.
  • Rosen, Y., & Salomon, G. (2007). The differential learning achievements of constructivist technology-intensive learning environments as compared with traditional ones: A meta-analysis. Journal of Educational Computing Research, 36(1), 1-14. doi: 10.2190/R8M4-7762-282U-554J
  • Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (2001). Assessing social presence in screen text-based computer conferencing. Journal of Distance Education, 14, 51-70.
  • Rovai, A. P., & James D. (2010). Why some distance education programs fail while others succeed in a global environment. Internet and Higher Education, 13, 141-147. doi: 10.1016/j.iheduc.2009.07.001
  • Rushkoff, D. (2010). Program or be Programmed. Ten Commands for a Digital Age. Or Books.
  • Sabry, K., & Baldwin, L. (2003). Web-based learning interaction and learning styles. British Journal of Educational Technology, 34, 443-454. doi: 10.1111/1467-8535.00341
  • Shih, M., Feng, J., & Tsai, C. C. (2008). Research and trends in the field of e-learning from 2001 to 2005: A content analysis of cognitive studies in selected journals. Computers & Education, 51(2), 955-967. doi: 10.1016/j.compedu.2007.10.004
  • Sierpinska, A., Bobos, G., & Knipping, Ch. (2008). Sources of students' frustration in preuniversity level, prerequisite mathematics courses. Instructional Science, 36, 289-320. doi: 10.1007/s11251-007-9033-6
  • Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409-426). Cambridge, UK: Cambridge University Press. Retrieved from http://GerryStahl.net/cscl/CSCL_English.pdf
  • Traphagan, T. W., Chiang, Y. H. V., Chang, H. M., Wattanawaha, B., Lee, H., Mayrath, M. C., Woo, J., Yoon, H. J., Jee, M. J., & Resta, P. E. (2010). Cognitive, Social and Teaching Presence in a Virtual World and a Text Chat. Computers & Education, 55(3), 923-936. doi: 10.1016/j.compedu.2010.04.003
  • Warschauer, M. (2003). Technology and social inclusion: Rethinking the digital divide. Cambridge, MA: MIT Press.
  • Warschauer, M., & Matuchniak, T. (2010). New technology and digital worlds: Analyzing evidence of equity in access, use, and outcomes. Review of Research in Education, 34(1), 179-225. doi: 10.3102/0091732X09349791
  • Weller, M. (2007). The distance from isolation: Why communities are the logical conclusion in e-learning. Computers and Education, 40, 148-159. doi: 10.1016/j.compedu.2005.04.015
  • Wu, B., & Teoh, A. P. (2008). A Comparative Analysis of Learners Interaction in the Learning Management Systems: Does National Culture Matter? AAOU Journal, 3(1), 1-16.