Control no lineal de un aerodeslizador no holonómico con acciones de control limitadas

  1. Dictino Chaos 1
  2. David Moreno-Salinas 1
  3. Rocío Muñoz 1
  4. Joaquín Aranda 1
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2013

Volumen: 10

Número: 4

Páginas: 402-412

Tipo: Artículo

DOI: 10.1016/J.RIAI.2013.05.012 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Objetivos de desarrollo sostenible

Resumen

Este artículo aborda el problema de seguimiento de trayectoria de un aerodeslizador subactuado. Esta clase de sistemas es difícil de controlar debido a que su movimiento está sujeto a una restricción no holonómica de segundo orden. La resolución de este complejo problema requiere la descomposición de la dinámica del sistema en dos subsistemas (posición y orientación) para los que se diseña una ley de control basada en dos controladores no lineales en cascada. El lazo externo de control calcula los valores de la fuerzas en el sistema inercial Fx y Fy que deberían aplicarse al aerodeslizador para seguir la trayectoria deseada. A partir de estas fuerzas se determina la referencia para la orientación, ψc, entrada del lazo interno. Por su parte, el lazo interno intenta controlar la orientación para de esta forma seguir las referencia ψc del lazo externo. Ambos controladores se han diseñado teniendo en cuenta la saturación de los actuadores. En particular, el principal resultado de este artículo muestra que en los casos donde la trayectoria está adecuadamente definida, es posible ajustar los parámetros del controlador para evitar la saturación de los actuadores. Este trabajo demuestra de forma teórica la estabilidad asintótica global del error de seguimiento bajo la acción del controlador propuesto. Además, mediante simulaciones, se analiza el comportamiento del sistema y el significado práctico de los resultados teóricos.

Referencias bibliográficas

  • Aguiar, A., Cremean, L., Hespanha, J., dec. 2003. Position tracking for a nonlinear underactuated hovercraft: controller design and experimental results. In: Decision and Control, 2003. Proceedings. 42nd IEEE Conference on. Vol. 4. pp. 3858 – 3863 vol.4. DOI: 10.1109/CDC.2003.1271751
  • Aguiar, A., Hespanha, J., aug. 2007. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. Automatic Control, IEEE Transactions on 52 (8), 1362 –1379. DOI: 10.1109/TAC.2007.902731
  • Aguilar-Ibáez, C., Sira-Ramírez, H., Suarez-Castañón, ´ M. S., MartínezNavarro, E., Moreno-Armendariz, M. A., 2012. The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach. International Journal of Control 85 (1), 69–77. DOI: 10.1080/00207179.2011.638328
  • Ariaei, F., Jonckheere, E., june 2006. Ldv approach to circular trajectory tracking of the underactuated hovercraft model. In: American Control Conference, 2006. p. 6 pp. DOI: 10.1109/ACC.2006.1657329
  • Ashrafiuon, H., Muske, K., McNinch, L., Soltan, R., nov. 2008. Sliding-mode tracking control of surface vessels. Industrial Electronics, IEEE Transactions on 55 (11), 4004 –4012. DOI: 10.1109/TIE.2008.2005933
  • Balluchi, A., Bicchi, A., Piccoli, B., Soueres, P., 2000. Stability and robustness of optimal synthesis for route tracking by dubins’ vehicles. In: Decision and Control, 2000. Proceedings of the 39th IEEE Conference on. Vol. 1. pp. 581 –586 vol.1. DOI: 10.1109/CDC.2000.912827
  • Behal, A., Dawson, D., Dixon, W., Fang, Y., mar 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. Automatic Control, IEEE Transactions on 47 (3), 495 –500. DOI: 10.1109/9.989148
  • Brockett, R., jan. 1976. Nonlinear systems and differential geometry. Proceedings of the IEEE 64 (1), 61 – 72. DOI: 10.1109/PROC.1976.10067
  • Chaos, D., 2010. Control no lineal de veh´ıculos subactuados marinos noholonomicos. Ph.D. thesis, Department of Informatica y Automatica of UNED University, Spain.
  • Dong, W., Guo, Y., june 2005. Nonlinear tracking control of underactuated surface vessel. In: American Control Conference, 2005. Proceedings of the 2005. pp. 4351 – 4356 vol. 6. DOI: 10.1109/ACC.2005.1470664
  • Dumbar, W. B., Olfati-Saber, R., Murray, R. M., 2003. Nonlinear and cooperative control of multiple hovercraft with input constraints. In: European Control Conference.
  • Encarnaçao, P., Pascoal, A., 2001. Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 1. pp. 964 –969 vol.1. DOI: 10.1109/.2001.980234
  • Fantoni, I., Lozano, R., Mazenc, F., Pettersen, K. Y., 2000. Stabilization of a nonlinear underactuated hovercraft. International Journal of Robust and Nonlinear Control 10 (8), 645–654.
  • Fliess, M., Levine, J., Rouchon, ´ P., 1995. Flatness and defect of nonlinear systems: Introductory theory and examples. International Journal of Control 61, 1327–1361.
  • Khalil, H. K., 2002. Nonlinear systems, 3rd Edition. Prentice Hall.
  • Kolmanovsky, I., McClamroch, N., dec 1995. Developments in nonholonomic control problems. Control Systems Magazine, IEEE 15 (6), 20 –36. DOI: 10.1109/37.476384
  • Lefeber, E., Pettersen, K., Nijmeijer, H., jan 2003. Tracking control of an underactuated ship. Control Systems Technology, IEEE Transactions on 11 (1), 52 – 61. DOI: 10.1109/TCST.2002.806465
  • Murray, R., Sastry, S., may 1993. Nonholonomic motion planning: steering using sinusoids. Automatic Control, IEEE Transactions on 38 (5), 700 –716. DOI: 10.1109/9.277235
  • Olfati-Saber, R., nov 2002. Global configuration stabilization for the vtol aircraft with strong input coupling. Automatic Control, IEEE Transactions on 47 (11), 1949 – 1952. DOI: 10.1109/TAC.2002.804457
  • Oriolo, G., Nakamura, Y., dec 1991. Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. In: Decision and Control, 1991., Proceedings of the 30th IEEE Conference on. pp. 2398 –2403 vol.3. DOI: 10.1109/CDC.1991.261620
  • Oya, M., Su, C.-Y., Katoh, R., feb 2003. Robust adaptive motion/force tracking control of uncertain nonholonomic mechanical systems. Robotics and Automation, IEEE Transactions on 19 (1), 175 – 181. DOI: 10.1109/TRA.2002.807528
  • Sira-Ramirez, H., nov 2002. Dynamic second-order sliding mode control of the hovercraft vessel. Control Systems Technology, IEEE Transactions on 10 (6), 860 – 865. DOI: 10.1109/TCST.2002.804134
  • Sira-Ramirez, H., Ibanez, C., 2000. The control of the hovercraft system: a flatness based approach. In: Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on. pp. 692 –697. DOI: 10.1109/CCA.2000.897513
  • Sira-Ramirez H., I. C., 2000. On the contol of the hovercraft system. Dynamics and Control 10, 151–163.
  • Toussaint, G., Basar, T., Bullo, F., 2000. Tracking for nonlinear underactuated surface vessels with generalized forces. In: Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on. pp. 355 –360. DOI: 10.1109/CCA.2000.897450