Análisis de los patrones espacio-temporales de eventos a partir de datos de Twitterel caso de la World Pride 2017 en Madrid
ISSN: 0014-1496
Datum der Publikation: 2020
Ausgabe: 81
Nummer: 288
Art: Artikel
Andere Publikationen in: Estudios geográficos
Zusammenfassung
This work analyses the spatio-temporal patterns of a mass event in a city from new data sources, starting from the hypothesis that crowds register high activity in social networks during the event programs. Identifying users who have posted geolocated tweets in the centre of Madrid during the 2017 World Pride, their origin cities and countries can be located, and the impact of the event at a space-time level can be evaluated from the comparison with the observed results during a regular week. The obtained results show a growth in the number of foreign users and a strong increase in activity in the main areas of the event, while activity in the more remote areas decreases.
Bibliographische Referenzen
- Abdelhaq, H., Sengstock, C., y Gertz, M. (2013). EvenTweet: Online localizated event detection from Twitter Proceedings of the VLDB Endowment, 6(12), pp. 1326–1329.
- Anselin, L. (1995). Local indicators of spatial association–LISA. Geographical Analysis, 27(2), pp. 93-115.
- Bar-Gera, H. (2007). Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transportation Research Part C: Emerging Technologies, 15(6), pp. 380-391.
- Batista e Silva, F., Marin Herrera, M., Rosina, K., Ribeiro Barranco, R., Freire, S., y Schiavina, M. (2018). Analyzing spatiotemporal patterns of tourism in Europe at high-resolution with conventional and big data sources. Tourism Management, 68, pp. 101-115.
- Cáceres, N. (2012). Traffic Flow Estimation Models Using Cellular Phone Data. IEEE Transactions on Intelligent Transportation Systems, pp. 1–12.
- Cáceres, N., Wideberg, J.P, y Benítez, F.G. (2007). Deriving origin–destination data from a mobile phone network. IET Intelligent Transport Systems, 1, pp. 15–26.
- Frías-Martínez, V., Soto, V., Hohwald, H., y Frías-Martínez, E. (2012). Characterizing urban landscapes using geolocated tweets. Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom), pp. 239-248. IEEE.
- Gutiérrez-Puebla, J., y García-Palomares, J.C. (2016). Big (Geo) Data en Ciencias Sociales: Retos y Oportunidades. Revista de Estudios Andaluces, 33(331), pp. 1-23.
- Gutiérrez-Puebla, J. (2018). Big Data y nuevas geografías: la huella digital de las actividades humanas. Documents d’Anàlisi Geogràfica, 64, pp. 195–217.
- Huang, Q., y Wong, D. (2016). Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? International Journal of Geographical Information Science, 30(9), pp. 1873–1898.
- Huang, Y., Li, Y., y Shan, J. (2018). Spatial-Temporal Event Detection from Geo-Tagged Tweets. ISPRS International Journal of Geo-Information, 7(4).
- Kim, K-S., Kojima, I., y Ogawa, H. (2016). Discovery of local topics by using latent spatio-temporal relationships in geo-social media. International Journal of Geographical Information Science, 30(9), pp. 1899–1922.
- Kirilenko, A. P., y Stepchenkova, S. O. (2017). Sochi 2014 Olympics on Twitter: Perspectives of hosts and guests. Tourism Management, 63, pp. 54–65.
- Kitchin, R. (2013). Big Data and human geography: opportunities, challenges and risks. Dialogues in Human Geography, 3(3), pp. 262-267.
- Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), pp. 1-12.
- Knott, B., Swart, K., y Visser, S. (2015). The impact of sport mega-events on the quality of life for host city residents: reflections on the 2010 FIFA World Cup. African Journal of Hospitality, Tourism and Leisure, 4, pp. 1–16.
- Lansley, G., Smith, M. De, Goodchild, M., y Longley, P. (2018). Big Data and Geospatial Analysis. Geospatial Analysis 6th Edition, pp. 547-570. Edimburgo, Reino Unido: The Winchelsea Press.
- Lee, R., y Sumiya, K. (2010). Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks - LBSN ’10, pp. 1-10. New York, ACM Press.
- Leszczynski, A. y Crampton, J. (2016). Introduction: spatial big data and everyday life. Big Data & Society, 3(2), pp. 1-6.
- Leung, D., Law, R., van Hoof, H., y Buhalis, D. (2013). Social Media in Tourism and Hospitality: A Literature Review. Journal of Travel and Tourism Marketing, 30(1–2), pp. 3–22.
- Li, H., Ji, H., y Zhao, L. (2015). Social Event Extraction: Task, Challenges and Techniques. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, pp. 526–532, New York, New York, ACM Press.
- Liu, H., Ge, Y., Zheng, Q., Lin, R., y Li, H. (2018). Detecting global and local topics via mining twitter data. Neurocomputing, 273, pp. 120–132.
- Marine-Roig, E., y Anton Clavé, S. (2015). Tourism analytics with massive user-generated content: A case study of Barcelona. Journal of Destination Marketing and Management, 4(3), pp. 162–172.
- Masala, E., y Pallares-Barbera, M. (2016). When Internet became Geography. Spatial patterns on urban open spaces through the analysis of user-generated data in Barcelona. ICiTy – Enhancing Places through Technology. MALTA: April, 18‐19. The mid‐term conference for COST Action TU1306 CyberParks: Fostering Knowledge about the Relationship between Information and Communication Technologies and Public Spaces. https:// www.um.edu.mt/ev, Valletta, Malta.
- Miller, H. J. (2010). The data avalanche is here. Shouldn’t we be digging? Journal of Regional Science, 50(1), pp. 181-201.
- Miller, H.J., y Goodchild, M.F. (2014). Data-driven geography. GeoJournal, 80(4), pp. 449-461.
- Moya-Gómez, B.; Salas-Olmedo, M. H.; García-Palomares, J. C. y Gutiérrez-Puebla, J. (2017). Dynamic accessibility using Big Data: The role of the changing conditions of network congestion and destination attractiveness. Networks and Spatial Economics, 18(2), pp. 273-290.
- Osorio, J., y García-Palomares, J.C. (2017). Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), pp. 247–267.
- Osorio, J., y García-Palomares, J.C. (2019). Social media and urban mobility: using Twitter to calculate home-work travel matrices. Cities, 89, pp. 268- 280.
- Popescu, A., y Pennacchiotti, M. (2011). Dancing with the Stars, NBA Games, Politics: An Exploration of Twitter Users’ Response to Events. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pp. 594–597. http:// www.aaai.org/ocs/index.php/ICWSM/ICWSM11/ paper/viewPDFInterstitial/2866/3233
- Raun, J., Ahas, R., & Tiru, M. (2016). Measuring tourism destinations using mobile tracking data. Tourism Management, 57, pp. 202-212.
- Steiger, E., Ellersiek, T., Resch, B., y Zipf, A. (2015). Uncovering latent mobility patterns from Twitter during mass events. Journal for Geographic Information Science, 1, pp. 525–534.
- Tascón, M., y Coullaut, A. (2016). Big Data y el internet de las cosas: qué hay detrás y cómo nos va a cambiar. Madrid, Catarata, 128 pp.
- Versichele, M., Neutens, T., Delafontaine, M., y van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), pp. 208–220.
- Weng, J., Yao, Y., Leonardi, E., y Lee, F. (2011). Event Detection in Twitter. Proceedings of the Fifth International Conference on Weblogs and Social Media.
- Xu, Y., y González, M. C. (2017). Collective benefits in traffic during mega events via the use of information technologies. Journal of The Royal Society Interface, 14(129), pp. 1–10.
- Zeng, B., y Gerritsen, R. (2014). What do we know about social media in tourism? A review. Tourism Management Perspectives, 10, 27–36.
- Zhou, X., y Xu, C. (2017). Tracing the Spatial-Temporal Evolution of Events Based on Social Media Data. ISPRS International Journal of Geo-Information, 6(3), 88