Partial reinforcement in rat autoshaping with a long CSEffects of pramipexole and chlordiazepoxide on sign and goal tracking

  1. Esmeralda Fuentes-Verdugo 1
  2. Ricardo Pellón 1
  3. Mauricio R. Papini 2
  4. Carmen Torres 3
  5. Patrick Anselme 4
  1. 1 Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
  2. 2 Texas Christian University, Fort Worth, TX 76129, USA
  3. 3 Universidad de Jaén, 23071 Jaén, Spain
  4. 4 Ruhr-Universität Bochum,44801 Bochum, Germany
Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2021

Volumen: 42

Número: 1

Páginas: 85-108

Tipo: Artículo

DOI: 10.2478/PSICOLJ-2021-0005 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

In Pavlovian autoshaping, sign-tracking responses (lever pressing) to a conditioned stimulus (CS) are usually invigorated under partial reinforcement (PR) compared to continuous reinforcement (CR). This effect, called the PR acquisition effect (PRAE), can be interpreted in terms of increased incentive hope or frustration-induced drive derived from PR training. Incentive hope and frustration have been related to dopaminergic and GABAergic activity, respectively. We examined the within-trial dynamics of sign and goal tracking in rats exposed to 20-s-long lever presentations during autoshaping acquisition under PR vs. CR conditions under the effects of drugs tapping on dopamine and GABA activity. There was no evidence of the PRAE in these results, both groups showing high, stable sign-tracking response rates. However, the pharmacological treatments affected behavior as revealed in within-trial changes. The dopamine D2 receptor agonist pramipexole (0.4 mg/kg) suppressed lever pressing and magazine entries relative to saline controls in a within-subject design, but only in PR animals. The allosteric benzodiazepine chlordiazepoxide (5 mg/kg) failed to affect either sign or goal tracking in either CR or PR animals. These results emphasize the roles of dopamine and GABA receptors in autoshaping performance, but remain inconclusive with respect to incentive hope and frustration theories. Some aspects of within-trial changes in sign and goal tracking are consistent with a mixture of reward timing and response competition.

Referencias bibliográficas

  • Amsel, A. (1992). Frustration theory. An analysis of dispositional learning and memory. Cambridge: Cambridge University Press.
  • Amsel, A., MacKinnon, J.R., Rashotte, M.E., & Surridge, C.T. (1964). Partial reinforcement (acquisition) effects within subjects. Journal of the Experimental Analysis of Behavior, 7, 135–138. https://doi.org/10.1901/jeab.1964.7-135
  • Anselme, P. (2018). Gambling hijacks an ancestral motivational system shaped by natural selection. In: Tomie, A., Morrow, J. (Editors). Sign-tracking and drug addiction. Ann Arbor, MI: University of Michigan Press. http://dx.doi.org/10.3998/mpub.10215070
  • Anselme, P., Dreher, T., & Güntürkün, O. (2018). Pigeons consistently prefer easy over harder access to food: No reversal after direct dopaminergic stimulation. Behavioral Neuroscience, 132, 293–301. https://doi.org/10.1037/bne0000249
  • Anselme, P. & Güntürkün, O. (2019). How foraging works: Uncertainty magnifies food-seeking motivation. Behavioral and Brain Sciences, 42, e35. https://doi.org/10.1017/S0140525X18000948
  • Anselme, P., Robinson, M.J.F., & Berridge, K.C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioral Brain Research, 238, 53–61. http://dx.doi.org/10.1016/j.bbr.2012.10.006
  • Berridge, K.C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191, 391–431. https://doi.org/10.1007/s00213-006-0578-x
  • Boakes, R.A. (1977). Performance on learning to associate a stimulus with positive reinforcement. In: Davis, H. & Hurwitz, H.M.B. (Editors), Operant-Pavlovian interactions (pp. 67–97). Hillsdale, NJ: Erlbaum Associates.
  • Boughner, R.L. & Papini, M.R. (2008). Assessing the relationship between latent inhibition and the partial reinforcement extinction effect in autoshaping with rats. Pharmacology, Biochemistry and Behavior, 89, 432–443. https://doi.org/10.1016/j.pbb.2008.01.019
  • Chen, J.-S., Gross, K., & Amsel, A. (1981). Ontogeny of successive negative contrast and its dissociation from other paradoxical reward effects in preweanling rats. Journal of Comparative and Physiological Psychology, 95, 146–159. https://doi.org/10.1037/h0077749
  • Chen, J.-S., Gross, K., Stanton, M., & Amsel, A. (1980). The partial reinforcement acquisition effect in preweanling and juvenile rats. Bulletin of the Psychonomic Society, 16, 239–242. https://doi.org/10.3758/BF03329532
  • Crum, J., Brown, W.L., & Bitterman, M.E. (1951). The effect of partial and delayed reinforcement on resistance to extinction. American Journal of Psychology, 64, 228–237. https://doi.org/10.2307/1418669
  • Derman, R.C., Schneider, K., Juarez, S., & Delamater, A.R. (2018). Sign-tracking is an expectancy-mediated behavior that relies on prediction error mechanisms. Learning and Memory, 25, 550–563. https://dx.doi.org/10.1101%2Flm.047365.118
  • Dodd, M.L., Klos, K.J., Bower, J.H., Geda, Y.E., Josephs, K.A., & Ahlskog, J.E. (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62, 1377–1381. https://doi.org/10.1001/archneur.62.9.noc50009
  • Dudley, R.T. & Papini, M.R. (1995). Pavlovian performance of rats following unexpected reward omissions. Learning and Motivation, 26, 63–82. https://doi.org/10.1016/0023-9690(95)90011-X
  • Dziedzicka-Wasylewska, M., Ferrari, F., Johnson, R.D., Mireau, J., Rógoz, Z., Skuza, G., & Sokoloff, P. (2001). Mechanisms of action of pramipexole: Effects on receptors. Review of Contemporary Pharmacotherapy, 12, 1–31.
  • Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011). A selective role for dopamine in stimulus-reward learning. Nature, 469, 53–57. http://doi.org/10.1038/nature09588.
  • Gallistel, C.R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 107, 289–344. https://doi.org/10.1037/0033-295x.107.2.289
  • Gibbon, J., Farrell, L., Locurto, C.M., Duncan, H.J., & Terrace, H.S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior, 8, 45–59. https://doi.org/10.3758/BF03209729
  • Glueck, A.C., Torres, C., & Papini, M.R. (2018). Transfer between anticipatory and consummatory tasks involving reward loss. Learning and Motivation, 63, 105–125. http://dx.doi.org/10.1016/j.lmot.2018.05.001
  • Goodrich, K.P. (1959). Performance in different segments of an instrumental response chain as a function of reinforcement schedule. Journal of Experimental Psychology, 57, 57–63. https://doi.org/10.1037/h0043228
  • Gray, J.A. (1969). Sodium amobarbital and effects of frustrative nonreward. Journal of Comparative and Physiological Psychology, 69, 55–64. https://doi.org/10.1037/h0027935
  • Haggard, D.F. (1959). Acquisition of a simple running response as a function of partial and continuous schedules of reinforcement. Psychological Records, 9, 11–18.
  • Hart, A.S., Clark, J.J. & Phillips, P.E.M. (2015). Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory, 117, 84–92 http://dx.doi.org/10.1016/j.nlm.2014.07.010
  • Hearst, E., & Jenkins, H.M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Psychonomic Society.
  • Hellberg, S.N., Levit, J.D., & Robinson, M.J.F. (2018). Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behavioral Brain Research, 337, 17–33. https://doi.org/10.1016/j.bbr.2017.09.036
  • Hubble, J.P. (2002). Pre-clinical studies of pramipexole: clinical relevance. European Journal of Neurology, 7, 15–20 https://doi.org/10.1046/j.1468-1331.2000.0070s1015.x
  • Iliescu, A. F., Dwyer, D. M. & Honey, R. C. (in press). Individual differences in the nature of conditioned behavior across a conditioned stimulus: adaptation and application of a model. Journal of Experimental Psychology: Animal Learning and Cognitionhttps://doi.org/10.1037/xan0000270.
  • Iliescu, A.F., Hall, J., Wilkinson, L., Dwyer, D., & Honey, R.C. (2018). The nature of phenotypic variation in Pavlovian conditioning. Journal of Experimental Psychology: Animal Learning and Cognition 44, 358–369. https://doi.org/10.1037/xan0000177
  • Johnson, P.S., Madden, G.J., Brewer, A.T., Pinkston, J.W., & Fowler, S.C. (2011). Effects of acute pramipexole on preference for gambling-like schedules of reinforcement in rats. Psychopharmacology, 213, 11–18. https://doi.org/10.1007/s00213-010-2006-5
  • Killeen, P.R., & Pellón, R. (2013). Adjunctive behaviors are operants. Learning and Behavior, 41, 1–24. https://doi.org/10.3758/s13420-012-0095-1
  • Lagos, P., Scorza, C., Monti, J.M., Jantos, A., Reyes-Parada, M., Silveira, R., & Ponzoni, A. (1998). Effects of the D3 preferring dopamine agonist on sleep and waking, locomotor activity and striatal dopamine release in rats. European Neuropsychopharmacology, 8, 113–120. https://doi.org/10.1016/S0924-977X(97)00054-0
  • Lewis, D.J. (1960). Partial reinforcement: A selective review of the literature since 1950. Psychological Bulletin, 57, 1–28. https://doi.org/10.1037/h0040963
  • Liao, R.M., & Chang, F.J. (2003). Differential effects of diazepam infused into the amygdala and hippocampus on negative contrast. Pharmacology, Biochemistry and Behavior, 74, 953–960. https://doi.org/10.1016/S0091-3057(03)00023-6
  • Lopez, J.C., Karlsson, R.-M., & O’Donnell, P. (2015). Dopamine D2 modulation of sign and goal tracking in rats. Neuropsychopharmacology, 40, 2096–2102 (https://doi.org/10.1038/npp.2015.68).
  • McElroy, J.R., Miller, J.M., & Meyer, J.S. (1987). Comparison of the effects of chlordiazepoxide and CL 218,872 on serum corticosterone concentrations in rats. Psychopharmacology, 91, 467–472. https://doi.org/10.1007/BF00216012
  • McNaughton, N. (1984). Effects of anxiolytic drugs on the partial reinforcement extinction effect in runway and Skinner box. Quarterly Journal of Experimental Psychology, B36, 319–330. https://doi.org/10.1080/14640748408402211.
  • Meltzer, D., & Brahlek, J.A. (1970). Conditioned suppression and conditioned enhancement with the same positive UCS: An effect of CS duration. Journal of the Experimental Analysis of Behavior, 13, 67–73. https://doi.org/10.1901/jeab.1970.13-67
  • Meyer, P.J., Lovic, V., Saunders, B.T., Yager, L.M., Flagel, S.B., Morrow, J.D., & Robinson, T.E. (2012). Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PLoS ONE, 7, e38987. http://dx.doi.org/10.1371/journal.pone.0038987
  • Nelson, P.B., & Wollen, K.A. (1965). Effects of ethanol and partial reinforcement upon runway acquisition. Psychonomic Science, 3, 135–136 https://doi.org/10.3758/BF03343060
  • Ortega, L.A., Glueck, A.C., Daniel, A.M., Prado-Rivera, M.A., White, M.M., & Papini, M.R. (2014). Memory interfering effects of chlordiazepoxide on consummatory successive negative contrast. Pharmacology, Biochemistry and Behavior, 116, 96–106. https://doi.org/10.1016/j.pbb.2013.11.031
  • Papini, M.R., & Brewer, M. (1994). Response competition and the trial-spacing effect in autoshaping with rats. Learning and Motivation, 25, 201–215. https://doi.org/10.1006/lmot.1994.1011
  • Pavlov, I.P. (1927). Conditioned reflexes. Oxford: Oxford University Press.
  • Pearce, J.M., & Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552. https://doi.org/10.1037/0033-295X.87.6.532
  • Pellón, R., & Killeen, P.R. (2015). Responses compete and collaborate, shaping each other’s distributions: Commentary on Boakes, Patterson, Kendig, and Harris (2015). Journal of Experimental Psychology: Animal Learning and Cognition, 41, 444–451. https://doi.org/10.1037/xan0000067
  • Pellón, R., Íbias, J., & Killeen, P.R. (2018). Delay gradients for spout-licking and magazine-entering induced by a periodic food schedule. The Psychological Record, 68, 151–162. https://doi.org/10.1007/s40732-018-0275-2
  • Pivonello, R., Ferone, D., Lombardi, G., Colao, A., Lamerts, S.W.J., & Hofland, L.J. (2007). Novel insights in dopamine receptor physiology. European Journal of Endocrinology, 156, S13–S21. https://doi.org/10.1530/eje.1.02353
  • Robinson, M.J.F., Anselme, P., Fischer, A.M., & Berridge, K.C. (2014). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioral Brain Research, 266, 119–130. https://dx.doi.org/10.1016/j.bbr.2014.03.004
  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27. https://doi.org/10.1152/jn.1998.80.1.1
  • Strecht, R., Houston, M., & Jenkins, A. (1964). Effects of amobarbital on extinction of an instrumental response in rats. Nature (London), 201, 472–474. https://doi.org/10.1038/201472a0
  • Thomas, B., Honeycutt, D., & Papini, M. R. (1998). Reward magnitude, but not time of day, influences the trial-spacing effect in autoshaping with rats. Physiology and Behavior, 65, 423–427. https://doi.org/10.1016/s0031-9384(98)00178-4
  • Torres, C., Glueck, A.C., Conrad, S.E., Morón, I., & Papini, M.R. (2016). Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience, 332, 13–25 http://dx.doi.org/10.1016/j.neuroscience.2016.06.041
  • Tremblay, M., Silveira, M.M., Kaur, S., Hosking, J.G., Adams, W.K., Baunez, C. et al. (2017). Chronic D2/3 agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. European Journal of Neuroscience, 45, 159–166. http://dx.doi.org/10.1111/ejn.13332
  • Wagner, A.R. (1963). Sodium amytal and partially reinforced runway performance. Journal of Experimental Psychology, 65, 474–477. https://doi.org/10.1037/h0043679