Influencia de la riqueza familiar en el rendimiento lector del alumnado en PISA

  1. Pablo Sayans-Jiménez 1
  2. Esteban Vázquez-Cano 2
  3. César Bernal-Bravo 3
  1. 1 Universidad de Almería
    info

    Universidad de Almería

    Almería, España

    ROR https://ror.org/003d3xx08

  2. 2 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

  3. 3 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

Revista:
Revista de educación

ISSN: 0034-8082

Año de publicación: 2018

Título del ejemplar: PISA y TIMSS (II)

Número: 380

Páginas: 129-155

Tipo: Artículo

DOI: 10.4438/1988-592X-RE-2017-380-375 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de educación

Objetivos de desarrollo sostenible

Resumen

Este artículo presenta una investigación cuyo principal objetivo es determinar la incidencia de la riqueza familiar en el rendimiento lector en PISA de forma comparada en una muestra de países latinoamericanos (Brasil, Chile, Uruguay, Argentina (BA), México, Perú, Costa Rica, República Dominicana y Colombia) y del norte de Europa (Finlandia, Islandia, Noruega y Suecia). El estudio de la influencia de la riqueza familiar sobre el rendimiento lector se aborda de forma general analizando la relación de todos los recursos y artículos disponibles en el hogar de cada estudiante (variable Homepos) y su posible incidencia en el rendimiento lector. Subsiguientemente se estima la relación existente entre el rendimiento lector y variables socioeconómicas más específicas referidas; por un lado, a la riqueza familiar (variable Wealth) y, por otro, al número de recursos de las tecnologías de la información y de la comunicación (variable Ictres). Se ha empleado el análisis de regresión multigrupo que permite comprobar la similitud de la magnitud de la relación entre las variables indicadoras de la riqueza y el rendimiento lector entre los distintos países de este estudio. Los resultados muestran que, de forma general, la relación entre las variables relacionadas con la riqueza y el rendimiento lector es siempre mayor en el caso de los países latinoamericanos. Adicionalmente, el análisis de los coeficientes de regresión no estandarizados permitió identificar distintos grupos de países en función del incremento en puntos de rendimiento lector que supone el aumento en los indicadores de riqueza. La agrupación de países latinoamericanos, por un lado, y del norte de Europa, por otro, se aprecia con mayor nitidez en las variables Wealth y Ictres que en la variable Homepos.

Referencias bibliográficas

  • Ammermüller, A. (2004). PISA: What Makes the Difference? Explaining the Gap in PISA Test Scores Between Finland and Germany. No 04-04, ZEW Discussion Papers, ZEW Zentrum für Europäische Wirtschaftsforschung.
  • Aram, D., y Levin, I. (2002). Mother-child joint writing and storybook reading: Relations with literacy among low SES kindergartners. MerillPalmer Quarterly, 48, 202-224.
  • Barr, N. A. (1998). The economics of the welfare state. Stanford university press.
  • Barr, N. A. (2001). The welfare state as piggy bank: information, risk, uncertainty, and the role of the state. Oxford University Press.
  • Beals, D. E., y DeTemple, J. M. (1993). Home contributions to early language and literacy development. En D. Leu, y C. Kinzer (Eds.), Examining central issues in literacy research, theory and practice: Fortysecond year-book of the National Reading Conference (pp. 207-216). Chicago: National Reading Conference.
  • Bernstein, B. (1989). Clases, códigos y control. Madrid: Akal. Blacksher, E. (2002). On being poor and feeling poor: Low socioeconomic status and the moral self. Theoretical Medicine, 3, 455-470. Bourdieu, P., y Passeron, J. C. (2001). La reproducción. Madrid: Editorial
  • Popular. Breen, R., y Jonsson, J. O. (2005). Inequality of Opportunity in Comparative Perspective: Recent Research on Educational Attainment and Social Mobility. Annual Review of Sociology, 31, 223-243.
  • Brese, F., y Mirazchiyski, P. (2010). Measuring Students’ Family Background in Large-scale Education Studies. Proceedings 4th IEA International Research Conference. Recuperado de http://www.iea.nl/ fileadmin/user_upload/IRC/IRC_2010/Papers/IRC2010_Brese_Mirazchiyski.pdf
  • Britt, M., Goldman, S., y Rouet, J. (Eds.). (2012). Reading: From words to multiple texts. New York: Routledge.
  • Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge: Harvard University Press.
  • Bronfenbrenner, U. (1994). Ecological models of human development. En T. Husen, y T. N. Postlethwaite (Eds.), The international encyclopedia of education (pp. 1643-1647). New York: Elsevier.
  • Bronfenbrenner, U., y Morris, P. A. (1998). The ecology of developmental processes. En W. Damon, y R. Lerner (Eds.), Handbook of child psychology: Vol. 4. Theories of development (pp. 999-1058). New York: Wiley
  • Bruner, J. (1990). Acts of meaning. Cambridge, MA.: Harvard University Press.
  • Carlisle, J. F., Correnti, R., Phelps, G., y Zeng, J. (2009). Exploration of the contribution of teachers’ knowledge about reading to their students’ improvement in reading. Reading and Writing: An Interdisciplinary Journal, 22, 459-486.
  • Cheung, G. W., y Rensvold, R. B. (2002). Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Structural Equation Modeling, 9, 233-255. doi: 10.1207/s15328007sem0902_5
  • Coulombe, S., Tremblay, J. F., y Marchand, S. (2004). Literacy scores, human capital, and growth across fourteen OECD countries. Canada, Ottawa: International Adult Literacy Surevey.
  • Council of Europe (1996). Modern Languages: Learning, Teaching, Assessment: A Common European Framework of Reference. CC LANG, 95/5, Rev. IV, Council of Europe, Strasbourg.
  • Dole, J. A. (2004). The changing role of the reading specialist in school reform. The Reading Teacher, 57(5), 462-471.
  • Epstein, J. (2001). School, family, and community partnerships: Preparing educators and improving schools. Boulder, CO: Corwin.
  • Evans, M. A., Shaw, D., y Bell, M. (2000). Home literacy activities and their influence on early literacy skills. Canadian Journal of Experimental Psychology, 54, 65-75.
  • Farver, J. A. M., Xu, Y., Eppe, S., y Lonigan, C. (2006). Home environments and young Latino children’s school readiness. Early Childhood Research Quarterly, 21, 196-212.
  • Farver, J. A. M., Xu, Y., Lonigan, C. J., y Eppe, S. (2013). The home literacy environment and Latino head start children’s emergent literacy skills. Developmental Psychology, 49, 775-791.
  • Foorman, B. R., y Moats, L. C. (2004). Conditions for sustaining researchbased practices in early reading instruction.  Remedial and Special Education, 25(1), 51-60.
  • Goldthorpe, J. H. (2000). On Sociology. Oxford: Oxford University Press.
  • Gough, P., Juel, C., y Griffith, P. (1992). Reading, spelling and the orthographic cipher. En P. Gough, L.C. Ehri, y R. Treiman (Eds.), Reading acquisition (pp. 35-48). Hillsdale, NJ: Erlbaum.
  • Harkness, S., Super, C., Barry, O., Zeitlin, M., y Jennipher, L. (2009). Assessing the environment of children’s learning: The developmental niche in Africa. En E. Grigorenko (Ed.), Multicultural psychoeducation assessment (pp.133155). New York: Springer.
  • Holloway, J. H. (1999). Improving the reading skills of adolescents. Educational Leadership, 57(2), 80-82.
  • Hu, L., y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55. doi: 10.1080/10705519909540118
  • International Reading Association (2012). Adolescent literacy (Position statement, Rev.2012 ed.). Newark, DE.: Author.
  • Justice, L. M., y Sofka, A. E. (2013). Engaging children with print: Building early literacy skills through quality read-alouds. New York: Guilford.
  • Kirby, J. R., y Hogan, B. (2008). Family literacy environment and early literacy development. Exceptionality Education International, 18, 112130.
  • Klauda, S. L. y Wigfield, A. (2012). Relations of perceived parent and friend support for recreational reading with children’s reading motivations. Journal of Literacy Research, 44(1), 3-44.
  • Leu, D. (2007). Expanding the Reading Literacy Framework of PISA 2009 to include online reading comprehension. Unpublished document.
  • Marks, G. N. (2010). What aspects of schooling are important? School effects on tertiary entrance performance.  School Effectiveness and School Improvement, 21(3), 267-287.
  • McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185-204.
  • Mullis, I. V. S., Kennedy, A. M., Martin, M. O., y Sainsbury, M. (2006). PIRLS 2006 assessment framework and specifications. Chestnut Hill, MA: Boston College.
  • Murnane, R., Sawhill, I., y Snow, C. (2012). Literacy challenges for the twenty-first century: Introducing the issue. The Future of Children, 22(2), 3-15.
  • Muthén, L. K., y Muthén, B. O. (1998-2011). MPlus User’s Guide. Sixth Edition. Los Angeles, CA: Muthén y Muthén.
  • Neuman, S. B., y Dickinson, D. K. (2002). Handbook of early literacy research. New York: Guilford.
  • Ngorosho, D. (2011). Reading and writing ability in relation to home environment: A study in primary education in rural Tanzania. Child Indicators Research, 4, 369-388.
  • OCDE (2005). Learning for tomorrow’s world first results from PISA 2003. No.9264007245. Paris: OECD.
  • OCDE (2010). PISA 2009 Assessment Framework: Key Competencies in Reading, Mathematics and Science. Paris: PISA, OECD Publishing. doi:10.1787/9789264062658-en.
  • OCDE (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. Paris: PISA, OECD Publishing. doi:10.1787/9789264190511-en.
  • OCDE (2014). PISA 2012 Results: What Students Know and Can DoStudent Performance in Mathematics, Reading and Science (Volume I, Revised edition, February 2014). Paris: PISA, OECD Publishing. doi:10.1787/9789264201118-en
  • OCDE (2016). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. Paris: PISA, OECD Publishing. doi: 10.1787/9789264255425-en
  • OCDE (en prensa-a). Programa internacional de evaluación de alumnos (PISA).
  • OCDE (en prensa-b). PISA 2015. Informe técnico. Perfetti, C. A., y Marron, M. A. (1998). Learning to read: Literacy acquisition by children and adults. En D. A. Wagner (Ed.), Advances in adult literacy research and development (pp. 1-41). Hampton Press.
  • Raykov, T., y Marcoulides, G. A. (2004). Using the Delta Method for Approximate Interval Estimation of Parameter Functions in SEM. Structural Equation Modeling: A Multidisciplinary Journal, 11, 621-637. doi: 10.1207/s15328007sem1104_7
  • Reese, L., y Gallimore, R. (2000). Immigrant Latinos’ cultural model of literacy development. American Journal of Education, 108, 103-134.
  • Rodríguez Cabrero, G. (2004). El Estado de Bienestar en España: debates desarrollo, y retos. Madrid: Editorial Fundamentos.
  • Roth, F. P., Speece, D. L., y Cooper, D. H. (2002). A longitudinal analysis of the connection between oral language and early reading. Journal of Educational Research, 95, 259-272.
  • Schiefele, U., Schaffner, E., Möller, J., y Wigfield, A. (2012). Dimensions of reading motivation and their relation to reading behavior and competence. Reading Research Quarterly, 47(4), 427-463.
  • Schulz, W. (2005). Mathematics self-efficacy and student expectations. Results from PISA 2003. Paper presented for the annual meeting of the American Educational Research Association, Montreal.
  • Shavit, Y., y Blossfeld. H. P. (1993). Persistent inequality. Boulder: Westview Press.
  • Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417-453.
  • Spiezia, V. (2010). Does computer use increase educational achievements? Student-level evidence from PISA. OECD Journal: Economic Studies, 2010(1), 1-22.
  • Sulzby, E., y Teale, W. H. (1991). Emergent literacy. En R. Bar, M. Kamil, P. Monsenthal, y D. P. Pearson (Eds.), Handbook of reading research (pp. 727-757). New York: Longman.
  • Super, C., y Harkness, S. (1986). The developmental niche: A conceptualization at the interface of child and nature. International Journal of Behavioral Development, 9, 545-569
  • Tomul, E., y Celik, K. (2009). The relationship between the students’ academic achievement and their socioeconomic level: cross regional comparison. World Conference on Educational Sciences 2009, 1204-1210.
  • Traynor, A., y Raykov, T. (2013). Household possessions indices as wealth measures: a validity evaluation. Comparative Education Review, 57(4), 662-688.
  • UNESCO (2015). Education for all 2000-2015: Achievements and challenges. Education for All Global Monitoring Report. Paris: UNESCO.
  • Vázquez-Cano, E., Mengual-Andrés, S., y Roig-Vila, R. (2015). Análisis lexicométrico de la especificidad de la escritura digital del adolescente en Whastapp. Revista de Lingüística Teórica y Aplicada, 53(1), 83-105.
  • Vázquez-Cano, E. (2017). Analysis of Difficulties of Spanish Teachers to Improve Students’ Digital Reading Competence. A Case Study within the PISA Framework. Pedagogika, 125(1), 175-194. DOI: http:// dx.doi.org/10.15823/p.2017.13
  • Wößmann, L. (2004). How equal are educational opportunities? family background and student achievement in Europe and in US. IZA Discussion Paper No. 1284. September 2004.
  • Zhao, N., Valcke, M., Desoete, A., y Verhaeghe, J. (2011). The quadratic relationship between socioeconomic status and learning performance in China by multilevel analysis: Implications for policies to foster education equity. International Journal of Educational Development, 32, 412-422.