Evaluación de riesgos con Data Miningel sistema financiero español

  1. José Alejandro Fernández Fernández
  2. Virginia Bejarano Vázquez
  3. Juan Antonio Vicente Virseda
Revista:
Revista Mexicana de Economía y Finanzas (REMEF): nueva época

ISSN: 2448-6795 1665-5346

Año de publicación: 2019

Volumen: 14

Número: 3

Páginas: 309-328

Tipo: Artículo

DOI: 10.21919/REMEF.V14I3.349 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista Mexicana de Economía y Finanzas (REMEF): nueva época

Objetivos de desarrollo sostenible

Resumen

Abstract The objective of this work, based on Data Mining techniques, is to identify the best risk prediction method for the Spanish banking system, taking into account its specific characteristics and the economic situation of Spain during the period understudy. For this purpose, first of all, fourteen ratios are defined in order to identify, in terms of risks, the situation of Spanish banks and savings banks during the period under review. Through a technique of reduction of dimensions which simplifies the interpretation of results, four latent factors are obtained on which are evaluated, together with four additional macroeconomic variables, a set of algorithms of Data Mining, being finally selected the CHAID tree, unlike previous works, in which it hadnever come to propose the application of techniques of Data Mining and Machine Learning in the identification of situations of risk in the Spanish banking industry. One limitation of this work has been the impossibility of incorporating regulatory variables, due that this information is confidential, otherwise, we would have been able to incorporate a new dimension in the prediction of risks.

Referencias bibliográficas

  • Aktan, S. (2011). Application of machine learning algorithms for business failure prediction. Investment Management and Financial Innovations. 8. 52-65
  • Alaka, AH,Oyedeleb, LO,Owolabi, HA,Kumar, V,Ajayi, SO,Akinade, OO,Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems Applications. 94. 164
  • Altman, E.,Haldeman, R.,Narayanan, P.. (1977). Zeta analysis: a new model to identify bankruptcy risk of corporations. Journal of banking and finance. 29-54
  • Betz, F.,Oprică, S.,Peltonen, A.,Sarlin, P.. (2013). Predicting distress in european banks. European Central Bank, Working Paper Series.
  • Boyacioglu, M. A.,Kara, Y.,Baykan, Ö. K.. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert Systems with Applications. 3355
  • Brezigar-Masten, A.,Masten, I. (2012). CART-based selection of bankruptcy predictors for the logit model. Expert Systems with Applications. 10153
  • Canbas, S.,Cabuk, A.,Bilgin Kilic, S.. (2005). Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research. 528
  • Chen, M. Y.. (2011). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications. 38. 11261
  • Corona, E.,Bejarano, V.,González, J.R.. (2017). Análisis de estados financieros individuales y consolidados. UNED. Madrid.
  • Cox, R.,Wang, G.. (2014). Predicting the US bank failure: A discriminant analysis. Economic Analysis and Policy. 202
  • De Andrés, J.,Lorca, P.,de Cos Juez, F. J.,Sánchez-Lasheras, F.. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications. 1866
  • Gepp, A.,Kumar, K.. (2015). Predicting financial fistress: a comparison of survival analysis and decision tree techniques. Procedia Computer Science. 54. 396-404
  • Irimía-Dieguez, A.I.,Blanco-Oliver, A,Vázquez-Cueto, M.J.. (2015). A comparison of classification/regression trees and logistic regression in failure models. Procedia Economics and Finance. 51. 396-404
  • Kaiser, H. F.. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika. 23. 187-200
  • Koyuncugil, A.S.,Ozgulbas, N.. (2009). Risk modeling by CHAID decision tree algorithm. ICCES. 11. 39-46
  • Le, H.,Viviani, J.-L.. (2017). Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios. Research in International Business and Finance.
  • (2015). de recuperación y resolución de entidades de crédito y empresas de servicios de inversión.
  • Liviu, T.,Mădălina, P.,Marin, A.. (2015). A decision support system to predict financial distress. The case of Romania. Romanian Journal of Economic Forecasting. 18. 170
  • (2014). por la que se establece un marco para la reestructuración y la resolución de entidades de crédito y empresas de servicios de inversión, y por la que se modifican la Directiva 82/891/CEE del Consejo, y las Directivas 2001/24/CE, 2002/47/CE, 2004/25/CE, 2005/56/CE, 2007/36/CE, 2011/35/UE, 2012/30/UE y 2013/36/UE, y los Reglamentos (UE) no 1093/2010 y (UE) no 648/2012 del Parlamento Europeo y del Consejo (Directiva 2014/59/UE).
  • Madireddi, V.,Vadlamani, R.. (2011). Bankruptcy prediction in banks by principal component analysis threshold accepting trained wavelet neural network hybrid. 2011International Conference on Data Mining.
  • Olson, D. L.,Delen, D.,Meng, Y.. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems. 464
  • Serhan Koyuncugil, A.,Ozgulbas, N.. (2012). Financial early warning system model anddata mining application for risk detection. Expert Systems with Applications. 6238
  • Serrano Cinca, C.,Martín del Brío, B.. (1993). Prediccion de la quiebra bancaria mediante el empleo de redes neuronales artificiales.. Revista Española de Financiación y Contabilidad. 23. 153
  • Sinkey, F. Joseph. (1975). A multivariate statistical analysis of the characteristics of problem banks. The Journal of Finance. 30.
  • Yiqiang Jin, J.,Kanagaretnam, K.,Lobo, G.. (2011). Ability of accounting and audit quality variables to predict bank failure. Journal of Banking Finance. 2811