Readers versus Re-rankers para la Búsqueda de Respuestas sobre COVID-19 en literatura científica

  1. Peñas Padilla, Anselmo
  2. Lozano-Álvarez, Borja
  3. Berná, Javier
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2022

Número: 68

Páginas: 133-142

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

En este trabajo presentamos una comparación entre las dos arquitecturas neuronales de Respuesta a Preguntas (QA) más utilizadas para resolver el problema de la sobrecarga de información en los artículos relacionados con COVID-19: extracción de respuestas (reader) y el reordenamiento (re-ranker). Hemos encontrado que no hay estudios que comparen estos dos métodos a pesar de que son tan ampliamente utilizados. También realizamos una búsqueda de los mejores hiperparámetros para esta tarea y tratamos de concluir si un modelo pre-entrenado con documentos del dominio biomédico como bioBERT supera a un modelo de dominio general como BERT. Encontramos que el modelo de dominio biomédico no es claramente superior al generalista. También hemos estudiado el número de respuestas a extraer por contexto para obtener resultados consistentemente buenos. Finalmente, concluimos que aunque ambos enfoques (readers y re-rankers) son muy competitivos, los readers obtienen sistemáticamente mejores resultados.

Referencias bibliográficas

  • Bendersky, M., H. Zhuang, J. Ma, S. Han, K. Hall, and R. McDonald. 2020. RRF102: Meeting the TREC-COVID challenge with a 100+ runs ensemble. arXiv preprint arXiv:2010.00200.
  • Bhatia, P., L. Liu, K. Arumae, N. Pourdamghani, S. Deshpande, B. Snively, M. Mona, C. Wise, G. Price, S. Ramaswamy, X. Ma, R. Nallapati, Z. Huang, B. Xiang, and T. Kass-Hout. 2020. AWS CORD-19 Search: A Neural Search Engine for COVID-19 Literature.
  • Brill, E., S. Dumais, and M. Banko. 2002. An analysis of the AskMSR question-answering system. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pages 257–264.
  • Chen, D., A. Fisch, J. Weston, and A. Bordes. 2017. Reading Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879.
  • Choi, E., H. He, M. Iyyer, M. Yatskar, W.t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. 2018. QuAC: Question Answering in Context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2174– 2184.
  • Dang, H., J. Lin, and D. Kelly. 2008. Overview of the TREC 2006 Question Answering Track, 2008-11-05.
  • Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. 2017. Neural ranking models with weak supervision. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 65–74.
  • Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
  • Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.
  • Dietz, L., M. Verma, F. Radlinski, and N. Craswell. 2017. TREC Complex Answer Retrieval Overview. In TREC.
  • Ferrucci, D. A. 2012. Introduction to ”This is Watson”. IBM Journal of Research and Development, 56(3.4):1–1.
  • Goodwin, T. R., D. Demner-Fushman, K. Lo, L. L. Wang, W. R. Hersh, H. T. Dang, and I. M. Soboroff. 2020. Overview of the 2020 Epidemic Question Answering Track. Technical report, Text Analysis Conference (TAC) 2020.
  • Hao, T., X. Li, Y. He, F. L. Wang, and Y. Qu. 2022. Recent progress in leveraging deep learning methods for question answering. Neural Computing and Applications, 34(4):2765–2783.
  • Izacard, G. and E. Grave. 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 874–880, Online, April. Association for Computational Linguistics.
  • Karpukhin, V., B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.t. Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781.
  • Lee, J., W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. 2019. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 09.
  • MacAvaney, S., K. Hui, and A. Yates. 2017. An approach for weakly-supervised deep information retrieval. arXiv preprint arXiv:1707.00189.
  • Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. 2016. MS MARCO: A human-generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268.
  • Nogueira, R. and K. Cho. 2019. Passage Re-ranking with BERT. arXiv preprint arXiv:1901.04085.
  • Pradeep, R., R. Nogueira, and J. Lin. 2021. The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models. arXiv preprint arXiv:2101.05667.
  • Rajpurkar, P., R. Jia, and P. Liang. 2018. Know What You Don’t Know: Unanswerable Questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789.
  • Roberts, A., C. Raffel, and N. Shazeer. 2020. How Much Knowledge Can You Pack into the Parameters of a Language Model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5418–5426.
  • Roberts, K., T. Alam, S. Bedrick, D. Demner-Fushman, K. Lo, I. Soboroff, E. Voorhees, L. L. Wang, and W. R. Hersh. 2020. TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19. Journal of the American Medical Informatics Association, 27(9):1431–1436, 07.
  • Voorhees, E. M. et al. 1999. The TREC-8 question answering track report. In Trec, volume 99, pages 77–82. Citeseer.
  • Wang, L. L., K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Burdick, D. Eide, K. Funk, Y. Katsis, R. M. Kinney, et al. 2020. CORD-19: The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020.
  • Wang, Z., P. Ng, X. Ma, R. Nallapati, and B. Xiang. 2019. Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5881–5885.
  • Yang, W., H. Zhang, and J. Lin. 2019. Simple applications of BERT for ad hoc document retrieval. arXiv preprint arXiv:1903.10972.
  • Zhang, E., N. Gupta, R. Tang, X. Han, R. Pradeep, K. Lu, Y. Zhang, R. Nogueira, K. Cho, H. Fang, et al. 2020. Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846.