Readers versus Re-rankers para la Búsqueda de Respuestas sobre COVID-19 en literatura científica

  1. Peñas Padilla, Anselmo
  2. Lozano-Álvarez, Borja
  3. Berná, Javier
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2022

Número: 68

Páginas: 133-142

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

In this work we present a comparison between the two most used neural Question Answering (QA) architectures to solve the problem of information overload on COVID-19 related articles. The span extraction (reader) and the re-ranker. We have found that there are no studies that compare these two methods even though they are so widely used. We also performed a search of the best hyperparameters for this task, and tried to conclude whether a model pre-trained with biomedical documents such as bioBERT outperforms a general domain model such as BERT. We found that the domain model is not clearly superior to the generalist one. We have studied also the number of answers to be extracted per context to obtain consistently good results. Finally, we conclude that although both approaches (readers and re-rankers) are very competitive, readers obtain systematically better results.

Referencias bibliográficas

  • Bendersky, M., H. Zhuang, J. Ma, S. Han, K. Hall, and R. McDonald. 2020. RRF102: Meeting the TREC-COVID challenge with a 100+ runs ensemble. arXiv preprint arXiv:2010.00200.
  • Bhatia, P., L. Liu, K. Arumae, N. Pourdamghani, S. Deshpande, B. Snively, M. Mona, C. Wise, G. Price, S. Ramaswamy, X. Ma, R. Nallapati, Z. Huang, B. Xiang, and T. Kass-Hout. 2020. AWS CORD-19 Search: A Neural Search Engine for COVID-19 Literature.
  • Brill, E., S. Dumais, and M. Banko. 2002. An analysis of the AskMSR question-answering system. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pages 257–264.
  • Chen, D., A. Fisch, J. Weston, and A. Bordes. 2017. Reading Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879.
  • Choi, E., H. He, M. Iyyer, M. Yatskar, W.t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. 2018. QuAC: Question Answering in Context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2174– 2184.
  • Dang, H., J. Lin, and D. Kelly. 2008. Overview of the TREC 2006 Question Answering Track, 2008-11-05.
  • Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. 2017. Neural ranking models with weak supervision. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 65–74.
  • Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
  • Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.
  • Dietz, L., M. Verma, F. Radlinski, and N. Craswell. 2017. TREC Complex Answer Retrieval Overview. In TREC.
  • Ferrucci, D. A. 2012. Introduction to ”This is Watson”. IBM Journal of Research and Development, 56(3.4):1–1.
  • Goodwin, T. R., D. Demner-Fushman, K. Lo, L. L. Wang, W. R. Hersh, H. T. Dang, and I. M. Soboroff. 2020. Overview of the 2020 Epidemic Question Answering Track. Technical report, Text Analysis Conference (TAC) 2020.
  • Hao, T., X. Li, Y. He, F. L. Wang, and Y. Qu. 2022. Recent progress in leveraging deep learning methods for question answering. Neural Computing and Applications, 34(4):2765–2783.
  • Izacard, G. and E. Grave. 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 874–880, Online, April. Association for Computational Linguistics.
  • Karpukhin, V., B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.t. Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781.
  • Lee, J., W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. 2019. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 09.
  • MacAvaney, S., K. Hui, and A. Yates. 2017. An approach for weakly-supervised deep information retrieval. arXiv preprint arXiv:1707.00189.
  • Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. 2016. MS MARCO: A human-generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268.
  • Nogueira, R. and K. Cho. 2019. Passage Re-ranking with BERT. arXiv preprint arXiv:1901.04085.
  • Pradeep, R., R. Nogueira, and J. Lin. 2021. The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models. arXiv preprint arXiv:2101.05667.
  • Rajpurkar, P., R. Jia, and P. Liang. 2018. Know What You Don’t Know: Unanswerable Questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789.
  • Roberts, A., C. Raffel, and N. Shazeer. 2020. How Much Knowledge Can You Pack into the Parameters of a Language Model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5418–5426.
  • Roberts, K., T. Alam, S. Bedrick, D. Demner-Fushman, K. Lo, I. Soboroff, E. Voorhees, L. L. Wang, and W. R. Hersh. 2020. TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19. Journal of the American Medical Informatics Association, 27(9):1431–1436, 07.
  • Voorhees, E. M. et al. 1999. The TREC-8 question answering track report. In Trec, volume 99, pages 77–82. Citeseer.
  • Wang, L. L., K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Burdick, D. Eide, K. Funk, Y. Katsis, R. M. Kinney, et al. 2020. CORD-19: The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020.
  • Wang, Z., P. Ng, X. Ma, R. Nallapati, and B. Xiang. 2019. Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5881–5885.
  • Yang, W., H. Zhang, and J. Lin. 2019. Simple applications of BERT for ad hoc document retrieval. arXiv preprint arXiv:1903.10972.
  • Zhang, E., N. Gupta, R. Tang, X. Han, R. Pradeep, K. Lu, Y. Zhang, R. Nogueira, K. Cho, H. Fang, et al. 2020. Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846.