Big data y matrices origen-destino: Cartografía de flujos de movilidad en españa a partir de datos de twitter y comparación con datos de telefonía móvil

  1. Joaquín Osorio Arjona 1
  1. 1 Departamento de Población. Centro de Ciencias Humanas y Sociales CSIC; Madrid, España
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2022

Número: 29

Páginas: 115-130

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

This work analyses the value of new data sources based on Big Data to study mobility in Spain and compares different mobility patterns observed according to the data used. To do this, this work uses geolocated Twitter data published in Spain over a period of 30 months, analyses the spatio-temporal distribution of Twitter users according to the province or month in which the tweet was published, and designs a series of Origin-Destination matrices with the aim of visualizing different patterns in mobility flows on working days or during the summer vacation period. Finally, the results obtained are compared with the Origin-Destination matrices published by the Spanish Ministry of Development based on mobile phone data. The results obtained indicate a spatial distribution of Twitter users close to reality, a greater number of users in the month of August, and the role of the Community of Madrid as a core province that attracts travel at a national level. Regarding mobile phone data, a greater concentration of trips with origin or destination in the province of Madrid has been observed based on Twitter data.

Referencias bibliográficas

  • Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1), 3–27. https://doi.org/10.1080/10630731003597306.
  • Alexander, L., Jiang, S., Murga, M., & González, M. C. (2015). Origin-destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240–250. https://doi.org/10.1016/j.trc.2015.02.018.
  • Blanford, J. I., Huang, Z., Savelyev, A., & MacEachren, A. M. (2015). Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement. PLOS ONE, 10(6), e0129202. https://doi.org/10.1371/journal.pone.0129202.
  • Bonnel, P., Hombourger, E., Olteanu-Raimond, A.-M., & Smoreda, Z. (2015). Passive Mobile Phone Dataset to Construct Origin-destination Matrix: Potentials and Limitations. Transportation Research Procedia, 11, 381–398. https://doi.org/10.1016/j.trpro.2015.12.032.
  • Caceres, N., Wideberg, J. P., & Benitez, F. G. (2007). Deriving origin–destination data from a mobile phone network. IET Intelligent Transport Systems, 1(1), 15. https://doi.org/10.1049/iet-its:20060020.
  • Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285–299. https://doi.org/10.1016/j.trc.2016.04.005.
  • Demissie, M. G., Phithakkitnukoon, S., & Kattan, L. (2019). Trip Distribution Modeling Using Mobile Phone Data: Emphasis on Intra-Zonal Trips. IEEE Transactions on Intelligent Transportation Systems, 20(7). https://doi.org/10.1109/TITS.2018.2868468.
  • Gao, S., Yang, J., Yan, B., Hu, Y., Janowicz, K., & McKenzie, G. (2014). Detecting Origin-Destination Mobility Flows From Geotagged Tweets in Greater Los Angeles Area. Eight International Conference on Geographic Information Science (GIScience’14).
  • Gutiérrez-Puebla, J., Benitez, C., García-Palomares, J. C., Romanillos, G., Rubinstein, E., Leaño, J. M., … Condeço-Melhorado, A. M. (2020). Cómo aplicar Big Data en la planificación del transporte: el uso de datos de GPS en el análisis de la movilidad urbana. (C. Benitez, Ed.). Banco Interamericano de Desarrollo.
  • Gutiérrez-Puebla, J., Benitez, C., Leaño, J. M., García-Palomares, J. C., Condeço-Melhorado, A., Mojica, C., … Romanillos, G. (2019). Cómo aplicar Big Data en la planificación del transporte urbano. El uso de datos de telefonía móvil en el análisis de la movilidad. (C. Benitez, Ed.). Banco Interamericano de Desarrollo.
  • Gutiérrez, J., & García-Palomares, J. C. (2007). New spatial patterns of mobility within the metropolitan area of Madrid: Towards more complex and dispersed flow networks. Journal of Transport Geography, 15(1), 18–30. https://doi.org/10.1016/j. jtrangeo.2006.01.002.
  • Gutiérrez-Puebla, J., García-Palomares, J. C., & Salas-Olmedo, M. H. (2016). Big (Geo) Data en Ciencias Sociales: Retos y Oportunidades. Revista de Estudios Andaluces, 33(331), 1–23. https://doi.org/10.12795/rea.2016.i33.0.
  • Gutiérrez Puebla, J. (2018). Big Data y nuevas geografías: la huella digital de las actividades humanas. Documents d’Anàlisi Geogràfica, 64(2), 195. https://doi.org/10.5565/rev/dag.526.
  • Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260–271. https://doi.org/10.1080/15230406.2014.890072.
  • Kung, K. S., Greco, K., Sobolevsky, S., & Ratti, C. (2014). Exploring Universal Patterns in Human Home-Work Commuting from Mobile Phone Data. PLoS ONE, 9(6), 1–15. https://doi.org/10.1371/journal.pone.0096180.
  • Lee, J. H., Goao, S., & Goulias, K. G. (2015). Can Twitter data be used to validate travel demand models? GEOTRANS Report 2015-5-03, 1–27.
  • Lenormand, M., Picornell, M., Cantú-Ros, O. G., Tugores, A., Louail, T., Herranz, R., … Ramasco, J. J. (2014). Cross-Checking Different Sources of Mobility Information. PLoS ONE, 9(8), 1–10. https://doi.org/10.1371/journal.pone.0105184.
  • Louail, T., Lenormand, M., Picornell, M., García Cantú, O., Herranz, R., Frias-Martinez, E., … Barthelemy, M. (2015). Uncovering the spatial structure of mobility networks. Nature Communications, 6(1), 1–8. https://doi.org/10.1038/ncomms7007
  • Osorio-Arjona, J., & García-Palomares, J. C. (2017). Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), 247–267. https://doi.org/10.30827/CUADGEO.V56I3.5352.
  • Osorio-Arjona, J., & García-Palomares, J. C. (2019a). Big Data y universidades: análisis de movilidad de los estudiantes universitarios a partir de datos de Twitter. GeoFocus Revista Internacional de Ciencia y Tecnología de La Información Geográfica, 24(9), 37–57. https://doi.org/10.21138/GF.648
  • Osorio-Arjona, J., & García-Palomares, J. C. (2019b). Social media and urban mobility: Using twitter to calculate home-work travel matrices. Cities, 89, 268–280. https://doi.org/10.1016/j.cities.2019.03.006.
  • Perez, A. J., Dominguez, L. D., Rubiales, A. J., & Lotito, P. A. (2015). Optimización de matrices origen-destino estimadas a partir de datos georeferenciados en redes sociales. 13º Simposio Argentino de Investigación Operativa, 47–56.
  • Picornell, M., Ruiz, T., Lenormand, M., Ramasco, J. J., Dubernet, T., & Frías-Martínez, E. (2015). Exploring the potential of phone call data to characterize the relationship between social network and travel behavior. Transportation, 42(4), 647–668. https://doi.org/10.1007/s11116-015-9594-1.
  • Puura, A., Silm, S., & Ahas, R. (2018). The Relationship between Social Networks and Spatial Mobility: A Mobile-Phone-Based Study in Estonia. Journal of Urban Technology, 25(2), 7-25. https://doi.org/10.1080/10630732.2017.1406253
  • Salas-Olmedo, M. H., & Rojas Quezada, C. (2017). The use of public spaces in a medium-sized city: from Twitter data to mobility patterns. Journal of Maps, 13(1), 40–45. https://doi.org/10.1080/17445647.2017.1305302.
  • Silm, S., & Ahas, R. (2010). The seasonal variability of population in estonian municipalities. Environment and Planning A, 42(10), 2527–2546. https://doi.org/10.1068/a43139.
  • Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A., & González, M. C. (2015). The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies, 58, 162–177. https://doi.org/10.1016/j.trc.2015.04.022.
  • Yin, J., Soliman, A., Yin, D., & Wang, S. (2017). Depicting urban boundaries from a mobility network of spatial interactions: a case study of Great Britain with geo-located Twitter data. International Journal of Geographical Information Science, 31(7), 1293–1313. https://doi.org/10.1080/13658816.2017.1282615.