Thermal convection in rotating spherical shells

  1. GARCIA GONZALEZ, FERNANDO
Dirigée par:
  1. Juan Sánchez Umbría Directeur/trice
  2. Marta Net Marce Directeur/trice

Université de défendre: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 30 novembre 2012

Jury:
  1. Carles Simó President
  2. Dolors Puigjaner Riba Secrétaire
  3. Emilia Crespo del Arco Rapporteur

Type: Thèses

Teseo: 114800 DIALNET lock_openTDX editor

Résumé

El estudio de la convección térmica en geometría esférica en rotación es fundamental para explicar muchos fenómenos geofísicos y astrofísicos, tales como la generación de campos magnéticos, o la rotación diferencial observada en la atmósfera de los planetas mayores. Las dificultades asociadas con los estudios experimentales hacen que las simulaciones numéricas tridimensionales, como las que se presentan en esta tesis, sean una herramienta muy importante en este campo. Para la obtención de las ecuaciones de evolución, se aplica la aproximación de Boussinesq a las ecuaciones de conservación de la masa, la cantidad de movimiento y la energía, y se reescriben en función de los potenciales toroidal y poloidal. Los potenciales y la temperatura se desarrollan, sobre la esfera, en armónicos esféricos y en la variable radial se usa colocación. Para la integración se utilizan esquemas semi-implícitos, que en nuestro caso, estan basados en las fórmulas de diferenciación regresiva (IMEX-BDF), que se han implementado con control de orden y de paso (VSVO). En primer lugar, bajo condiciones de contorno de adherencia, calentamiento interno y número de Prandtl (cociente entre la escala de tiempo de difusión térmica y viscosa) muy bajo se ha realizado uno de los primeros análisis exhaustivos de la estabilidad lineal del estado conductivo, gracias a la mejora de los métodos numéricos empleados. Asimismo, se ha descrito por primera vez la existencia de modos polares antisimétricos al inicio de la convección con rotaciones elevadas. En segundo lugar se ha realizado un estudio de la eficiencia de diferentes integradores temporales de orden alto, con paso fijo o VSVO. En nuestros propios códigos temporales aplicamos las fórmulas IMEX-BDF con un tratamiento explícito de los términos no lineales de las ecuaciones. El uso de métodos 'matrix-free' hace práctico el tratamiento implícito del término de Coriolis y facilita la implementación de un control de orden y paso temporal adecuado. Los resultados muestran que con orden elevado, con o sin control de paso y orden, se incrementa la eficiencia de la integración y se obtienen soluciones más precisas. Finalmente, con número de Prandtl bajo y condiciones de contorno de adherencia, se explora exhaustivamente la dinámica no lineal mediante evoluciones temporales, describiendo el tipo de soluciones. También se estudian las propiedades medias de flujos no lineales. Utilizando parámetros similares en lo posible a los del núcleo externo de la Tierra se comparan los resultados de las simulaciones numéricas con experimentos de laboratorio y con mediciones de situaciones reales.