Algoritmos de geometría diferencial para la locomoción y navegación bípedas de robots humanoidesAplicación al robot RH0
- Pardos Gotor, José Manuel
- Carlos Balaguer Bernaldo de Quirós Director
Universidade de defensa: Universidad Carlos III de Madrid
Fecha de defensa: 19 de decembro de 2005
- Miguel Ángel Salichs Sánchez-Caballero Presidente/a
- Luis Santiago Garrido Bullón Secretario/a
- Josep Amat Girbau Vogal
- Sebastián Dormido Bencomo Vogal
- Juan Domingo Tardos Solano Vogal
Tipo: Tese
Resumo
Los humanos crean entornos adecuados para ser habitados por ellos mismos, por lo que un robot humanoide es un instrumento muy bien adaptado para proporcionar muchos servicios a las personas. Sin embargo, todavía nos encontramos lejos de una producción comercial masiva de humanoides fiables y útiles para la sociedad. Una de las principales razones que justifican la situación actual es el formidable desafío computacional que presentan estos sistemas mecánicos, debido a la complejidad dada por el gran número de restricciones y grados de libertad. Cuando la complejidad es grande, la necesidad de formulaciones matemáticas elegantes se convierte en un asunto de extrema importancia, porque nos permite construir soluciones eficaces. Por ello, este trabajo aborda la investigación en robótica utilizando técnicas de Geometría Diferencial, basadas en la teoría matemática de Grupos y Álgebras de Lie y herramientas de Geometría Computacional para el análisis de interfaces en evolución. Estas formulaciones conducen a aplicaciones con soluciones cerradas y completas, numéricamente estables y con una clara interpretación geométrica. Esta tesis pionera en el campo de la investigación con robots, tiene como objetivo fundamental la resolución completa del problema de Locomoción y Navegación Bípeda de Robots Humanoides. Para ello, desarrolla nuevos modelos y algoritmos geométricos de propósito general, no presentados anteriormente en la literatura. Estas nuevas soluciones son potentes, flexibles y válidas para aplicaciones en tiempo real. El nuevo algoritmo “Un Paso Adelante” (UPA), resuelve la locomoción bípeda de un humanoide, basándose en el nuevo modelo “División Cinemática Sagital” (DCS), que da soluciones cerradas al problema cinemático inverso del robot. El nuevo algoritmo “Método Modificado de Marcha Rápida” (M3R) proporciona trayectorias libres de colisiones para resolver problemas de planificación, sea cual fuere la estructura del entorno de trabajo. Para la navegación del robot humanoide, introducimos el nuevo modelo “Trayectoria Corporal Global” (TCG). Se ha creado un nuevo Simulador de Realidad Virtual (RobManSim) para robots, que permite desarrollar las teorías presentadas. Los nuevos modelos y algoritmos introducidos en esta tesis, se han probado con éxito en experimentos reales con el humanoide RH0 de la Universidad Carlos III de Madrid. Sinceramente, creemos que los mejores diseños y aplicaciones son concebidos con elegancia de pensamiento. Esta es la idea que ha inspirado los trabajos de esta tesis, para acercar siquiera en algo, ese futuro de humanoides socialmente útiles, diseñados a la medida del hombre.