El robot M Bot para el aprendizaje de coordenadas cartesianas en Educación Secundaria

  1. José-Manuel Sáez-López
  2. Rogelio Buceta-Otero
Revista:
Pixel-Bit: Revista de medios y educación

ISSN: 1133-8482

Año de publicación: 2023

Número: 66

Páginas: 271-301

Tipo: Artículo

Otras publicaciones en: Pixel-Bit: Revista de medios y educación

Resumen

Esta investigación resalta las interacciones y procesos pedagógicos en el uso educativo de robótica y programación visual por bloques en matemáticas, en la etapa de Educación Secundaria. Partiendo de conceptos y prácticas computacionales, se integran actividades prácticas y divertidas en el aula para el aprendizaje de la unidad didáctica de coordenadas cartesianas.Los participantes son 49 estudiantes de 2º grado de Educación Secundaria, 25 como grupo experimentaly 24 como grupo de control. Partiendo de undiseño pre-experimental y un análisis descriptivo, la primera dimensión “Resultados académicos con el uso de la robótica” utiliza un test. En la segunda dimensión “beneficios de la robótica en contextos educativos”se valora el aprendizaje activo, los conceptos computacionales, las matemáticas, la utilidad y la diversión. Aunque se concluye que no hay mejoras significativas en el rendimiento académico, sí mejora de un modo significativo la utilidad, la aplicación enmatemáticas, la utilidad percibida, y especialmente,la comprensión de los conceptos computacionales.

Referencias bibliográficas

  • Caci, B., Chiazzese, G., & D’Amico, A. (2013a). Robotic and virtual world programming labs to stimulate reasoning and visual-spatial abilities. Procedia-Social and Behavioral Sciences, 93, 1493–1497. https://doi.org/10.1016/j.sbspro.2013.10.070
  • Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. http://dx.doi.org/10.1016/j.compedu.2017.03.001
  • Chevalier, M., Giang, C., Bruno, B., & Mondada, F. (2021). Teachers' perspective on fostering computational thinking through educational robotics. arXiv. https://doi.org/10.1007/978-3-030-82544-7_17
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  • Fanchamps, N., Slangen, L., Specht, M., & Hennissen, P. (2021). The impact of SRA-programming on computational thinking in a visual oriented programming environment. Education and Information Technologies, 26(5), 6479–98. https://doi.org/10.1007/s10639-021-10578-0
  • Freeman, A., Adams Becker, S., Cummins, M., Davis, A., & Hall Giesinger, C. (2017). NMC/CoSN horizon report: 2017 K-12 Edition. The New Media Consortium. https://www.epiphanymgmt.com/Downloads/horizon%20report.pdf
  • Hair, J.F., Anderson, R.E., Tatham, R.L., & Black, W.C. (1998). Multivariate data analysis. (5th ed). Prentice Hall.
  • Hiltz, S. R., Coppola, N., Rotter, N., & Turoff, M. (2000). Measuring the importance of collaborative learning for the effectiveness of ALN: a multi-measure, multi-method approach. Journal of Asynchronous Learning Networks, 4(2), 103-125. https://bit.ly/3G3DzUv
  • Hickmott, D., Prieto-Rodríguez, E., & Holmes, K. (2018). A scoping review of studies on computational thinking in K-12 mathematics classrooms. Digital Experiences in Mathematics Education, 4, 48-69. https://doi.org/10.1007/s40751-017-0038-8
  • Howe, J. A. M., Ross, P. M., Johnson, K. R., Plane, F., & Inglis, R. (1982). Teaching mathematics through programming in the classroom. Computers & Education, 6(1), 85–91. https://doi.org/10.1016/0360-1315(82)90016-1
  • Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life–How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? International Journal of Information Management, 55(102183), 1–6. https://doi.org/10.1016/j.ijinfomgt.2020.102183
  • International Society for Technology in Education and the Computer Science Teachers Association. (2011). Operational definition of computational thinking for K-12. https://bit.ly/3vpwKrw
  • Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide computational thinking: A cross-case qualitative analysis. Computers and Education, 82, 263-279. https://doi.org/10.1016/j.compedu.2014.11.022
  • Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to promote elementary education pre-service teachers’ STEM engagement, learning, and teaching. Computers & Education, 91, 14–31. https://doi.org/10.1016/j.compe du.2015.08.005
  • Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-toone robotics instruction. Computers & Education, 111, 31–43. https://doi.org/10.1016/j.compedu.2017.04.002
  • Kwon, D.Y., Kim, H.S., Shim, J.K., & Lee, W.G. (2012). Algorithmic bricks: a tangible robot programming tool for elementary school students. Education, IEEE Transactions, 55(4), 474-479. http://dx.doi.org/10.1109/TE.2012.2190071
  • Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school. Journal of Computing Sciences in Colleges, 24(3), 118-124. https://bit.ly/3Q3Qdb0
  • Laros, F. J. M., & Steenkamp, J.-B. E. M. (2005). Emotions in consumer behavior: a hierarchical approach. Journal of Business Research, 58(10), 1437-1445. https://doi.org/10.1016/j.jbusres.2003.09.013
  • Luxton-Reilly, A. (2016). Learning to program is easy. Paper presented at the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Arequipa, Peru. Association for Computing Machinery. New York, USA (p.p 284–289). doi: https://doi.org/10.1145/2899415.2899432
  • Mazzoni, E. & Benvenuti, M. (2015). A Robot-Partner for Preschool Children Learning English Using Socio-Cognitive Conflict. Educational Technology & Society, 18(4), 474–485.http://www.jstor.org/stable/jeductechsoci.18.4.474
  • Noss, R. & Hoyles, C. (1991). Logo and the Learning of Mathematics: Looking Back and Looking Forward. In Hoyles, C. & Noss, R. (Eds.) Learning Mathematics and Logo. MIT Press. p. 431-468
  • Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books. https://dl.acm.org/doi/pdf/10.5555/1095592
  • Rodríguez-Martínez, J.A.,González-Calero, J.A & Sáez-López, J.M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316-327. https://doi.org/10.1080/10494820.2019.1612448
  • Sáez-López, J. M. (2017). Robots educativos y programación por bloques en Educación Infantil y Primaria: propuestas con Bee Bot y M Bot. En R. Cózar y M. V. Moya (Eds.), Entornos humanos digitalizados (pp. 35-52). Síntesis.
  • Sáez-López, J. M., Buceta Otero, R., y De Lara García-Cervigón, S. (2021). Introducing robotics and block programming in elementary education. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 95-113. http://dx.doi.org/10.5944/ried.24.1.27649
  • Sáez-López, J.M., Román-González, M. & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school. A two-year case study using scratch in five schools. Computers & Education, 97, 129-141. http://dx.doi.org/10.1016/j.compedu.2016.03.003
  • Sáez-López, J. M. & Sevillano-García, M. L. & Vázquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405-1425. https://doi.org/10.1007/s11423-019-09648-5
  • Spolaôr, N. & Vavassori-Benitti, F.B. (2017). Robotics applications grounded in learning theories on tertiary education: A systematic review. Computers & Education, 112, 97-107. http://dx.doi.org/10.1016/j.compedu.2017.05.001 UNESCO (2022). UNESCO ICT Competency Framework for Teachers. https://bit.ly/3WuiF85