Redes sociales geolocalizadas y covid-19:Análisis de la actividad espaciotemporal de los usuarios de twitter de españa durante la pandemia
- 1 Departamento de Población. Centro de Ciencias Humanas y Sociales CSIC; Madrid, España
ISSN: 1578-5157
Year of publication: 2022
Issue: 30
Pages: 25-47
Type: Article
More publications in: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica
Abstract
This work seeks to show Twitter as an alternative data source for the study of the pandemic caused by the COVID-19 virus in Spain. For this work, an analysis of the spatial and temporal distribution of the sample of users obtained in three different periods of the year 2020 is proposed, and then the obtained results are compared with the same periods of the year prior to the pandemic. A space-time analysis of the use of terms associated with the disease is also elaborated, and heat maps are made to observe the impact caused in the activity of two cities of relevant tourist weight. The obtained results indicate a sharp decrease in the number of users who publish geolocated tweetsin the country throughout 2020, especially in the second half of the year and in the interior provinces of the peninsula. A less pronounced decrease in the number of users is also observed in coastal areas and provinces oriented to the tourism sector.
Bibliographic References
- Barros, J. M., Duggan, J., & Rebholz-Schuhmann, D. (2018). Disease mentions in airport and hospital geolocations expose dominance of news events for disease concerns. Journal of Biomedical Semantics, 9(1), 1–11. https://doi.org/10.1186/s13326-018-0186-9
- Bisanzio, D., Kraemer, M. U. G., Bogoch, I. I., Brewer, T., Brownstein, J. S., & Reithinger, R. (2020). Use of Twitter social media activity as a proxy for human mobility to predict the spatiotemporal spread of COVID-19 at global scale. Geospatial Health, 15(1), 19–24. https://doi.org/10.4081/gh.2020.882
- Blanford, J. I., Huang, Z., Savelyev, A., & MacEachren, A. M. (2015). Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement. PLOS ONE, 10(6), e0129202. https://doi.org/10.1371/journal.pone.0129202
- Cai, M., Shah, N., Li, J., Chen, W. H., Cuomo, R. E., Obradovich, N., & Mackey, T. K. (2020). Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study. PLoS ONE, 15(8 August 2020), 1–13. https://doi.org/10.1371/journal.pone.0235150
- Cerda L, J., & Valdivia C, G. (2007). John Snow, la epidemia de cólera y el nacimiento de la epidemiología moderna. Revista Chilena de Infectología, 24(4), 331–334. https://doi.org/10.4067/S0716- 10182007000400014
- Cesare, N., Dwivedi, P., Nguyen, Q. C., & Nsoesie, E. O. (2019). Use of social media, search queries, and demographic data to assess obesity prevalence in the United States. Palgrave Communications, 5(1), 1–9. https://doi.org/10.1057/s41599-019-0314-x
- Daughton, A. R., Shelley, C. D., Barnard, M., Gerts, D., Ross, C. W., Crooker, I., … Fairchild, G. (2021, May 1). Mining and validating social media data for COVID-19-related human behaviors between January and July 2020: Infodemiology study. Journal of Medical Internet Research. JMIR Publications Inc. https://doi.org/10.2196/27059
- Eysenbach, G. (2011). Infodemiology and Infoveillance: Tracking Online Health Information and Cyberbehavior for Public Health. American Journal of Preventive Medicine, 40(5), S154–S158. https://doi.org/10.1016/j.amepre.2011.02.006 Fernández, R. (2022). Ranking de las 10 ciudades españolas con mayor número de usuarios activos de Twitter en 2021. https://es.statista.com/estadisticas/520085/ciudades-con-mayor-numero-de-usuariosactivos-de-twitter/ (Última fecha de acceso: 01/11/2022). https://dx.doi.org/10.21138/GF.789
- Frith, J., & Saker, M. (2020). It Is All About Location: Smartphones and Tracking the Spread of COVID19. Social Media and Society, 6(3). https://doi.org/10.1177/2056305120948257
- Ghosh, D., & Guha, R. (2013). What are we ‘tweeting’ about obesity? Mapping tweets with topic modeling and Geographic Information System. Cartography and Geographic Information Science, 40(2). https://doi.org/10.1080/15230406.2013.776210
- Google (2020). Coronavirus (COVID-19). https://news.google.com/covid19/map?hl=es (Última fecha de acceso: 01/11/2022).
- Gutiérrez-Puebla, J., García-Palomares, J. C., & Salas-Olmedo, M. H. (2016). Big (Geo) Data en Ciencias Sociales: Retos y Oportunidades. Revista de Estudios Andaluces, 33(331), 1–23. https://doi.org/10.12795/rea.2016.i33.0
- Gutiérrez, H. (2020). El turismo sufre su peor verano con un 75% menos de viajeros extranjeros en julio. https://elpais.com/economia/2020-09-01/el-turismo-comienza-su-peor-verano-con-un-75-menosde-viajeros-extranjeros-en-julio.html Última fecha de acceso: 01/11/2022).
- Hartley, D., Nelson, N., Walters, R., Arthur, R., Yangarber, R., Madoff, L., … Lightfoot, N. (2010). Landscape of international event-based biosurveillance. Emerging Health Threats Journal, 3:e3. https://doi.org/10.3134/ehtj.10.003
- Huang, X., Li, Z., Jiang, Y., Li, X., & Porter, D. (2020). Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE, 15(11 November). https://doi.org/10.1371/journal.pone.0241957
- Jiang, Y., Huang, X., & Li, Z. (2021). Spatiotemporal patterns of human mobility and its association with land use types during covid-19 in New York city. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050344
- Kamel Boulos, M. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19(1). https://doi.org/10.1186/s12942-020-00202-
- Khan, Y., Leung, G. J., Belanger, P., Gournis, E., Buckeridge, D. L., Liu, L., … Johnson, I. L. (2018). Comparing Twitter data to routine data sources in public health surveillance for the 2015 Pan/Parapan American Games: an ecological study. Canadian Journal of Public Health, 109(3), 419–426. https://doi.org/10.17269/s41997-018-0059-0
- Johs Hopkins Coronavirus Resource Center (2020). COVID-19 Dashboard. https://coronavirus.jhu.edu/map.html (Última fecha de acceso: 01/11/2022).
- Lampos, V., De Bie, T., & Cristianini, N. (2010). Flu detector-tracking epidemics on twitter. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6323 LNAI(PART 3), 599–602. https://doi.org/10.1007/978-3-642-15939-8_42
- Lansley, G., & Longley, P. A. (2016). The geography of Twitter topics in London. Computers, Environment and Urban Systems, 58, 85–96. https://doi.org/10.1016/j.compenvurbsys.2016.04.002 https://dx.doi.org/10.21138/GF.789
- Li, Z., Li, X., Porter, D., Zhang, J., Jiang, Y., Olatosi, B., & Weissman, S. (2020). Monitoring the spatial spread of covid-19 and effectiveness of control measures through human movement data: Proposal for a predictive model using big data analytics. JMIR Research Protocols, 9(12). https://doi.org/10.2196/24432
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática (2020a). Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. https://boe.es/buscar/act.php?id=BOE-A-2020-3692 (Última fecha de acceso: 01/11/2022).
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática (2020b). Real Decreto 926/2020, de 25 de octubre, por el que se declara el estado de alarma para contener la propagación de infecciones causadas por el SARS-CoV-2. https://boe.es/diario_boe/txt.php?id=BOE-A-2020-12898 (Última fecha de acceso: 01/11/2022).
- Morshed, S. A., Khan, S. S., Tanvir, R. B., & Nur, S. (2021). Impact of COVID-19 pandemic on ride-hailing services based on large-scale Twitter data analysis. Journal of Urban Management, 10(2), 155–165. https://doi.org/10.1016/j.jum.2021.03.002
- Nguyen, Q. C., Brunisholz, K. D., Yu, W., McCullough, M., Hanson, H. A., Litchman, M. L., … Smith, K. R. (2017). Twitter-derived neighborhood characteristics associated with obesity and diabetes. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-16573-1
- Osorio Arjona, J., & García Palomares, J. C. (2020). Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows. Journal of Maps, 16(1), 153–160. https://doi.org/10.1080/17445647.2020.1778549
- Poom, A., Järv, O., Zook, M., & Toivonen, T. (2020). COVID-19 is spatial: Ensuring that mobile Big Data is used for social good. Big Data and Society. https://doi.org/10.1177/2053951720952088
- Porcher, S., & Renault, T. (2021). Social distancing beliefs and human mobility: Evidence from Twitter. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0246949
- Sousa, L., de Mello, R., Cedrim, D., Garcia, A., Missier, P., Uchôa, A., … Romanovsky, A. (2018). VazaDengue: An information system for preventing and combating mosquito-borne diseases with social networks. Information Systems, 75, 26–42. https://doi.org/10.1016/j.is.2018.02.003
- Souza, R., Neill, D. B., Assuncao, R. M., & Meira, Jr., W. (2019). Identifying High-Risk Areas for Dengue Infection Using Mobility Patterns on Twitter. Online Journal of Public Health Informatics, 11(1), 3–5. https://doi.org/10.5210/ojphi.v11i1.9754
- Xu, P., Dredze, M., & Broniatowski, D. A. (2020). The Twitter Social Mobility Index: Measuring Social Distancing Practices With Geolocated Tweets. Journal of Medical Internet Research, 22(12), e21499. https://doi.org/10.2196/21499
- World Health Organization (2020). Advice for the public: Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (Última fecha de acceso: 01/11/2022).
- Young, S. D., Mercer, N., Weiss, R. E., Torrone, E. A., & Aral, S. O. (2018). Using social media as a tool to predict syphilis. Preventive Medicine, 109(August 2017), 58–61. https://doi.org/10.1016/j.ypmed.2017.12.016 https://dx.doi.org/10.21138/GF.789 Zeng, C., Zhang, J., Li, Z., Sun, X., Olatosi, B., Weissman, S., & Li, X. (2021). Spatial-temporal relationship between population mobility and COVID-19 outbreaks in south carolina: Time series forecasting analysis. Journal of Medical Internet Research, 23(4). https://doi.org/10.2196/27045
- Zhang, H., Wheldon, C., Dunn, A. G., Tao, C., Huo, J., Zhang, R., … Bian, J. (2020). Mining Twitter to assess the determinants of health behavior toward human papillomavirus vaccination in the United States. Journal of the American Medical Informatics Association, 27(2), 225–235. https://doi.org/10.1093/jamia/ocz191. https://dx.doi.org/10.21138/GF.789 https://doi.org/10.1093/jamia/ocz191