Automorphism groups of real algebraic curves of genus $3$

  1. Bujalance, Emilio
  2. Etayo, José Javier
  3. Gamboa, José Manuel
Revista:
Proceedings of the Japan Academy, Series A, Mathematical Sciences

ISSN: 0386-2194

Ano de publicación: 1986

Volume: 62

Número: 1

Tipo: Artigo

DOI: 10.3792/PJAA.62.40 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Proceedings of the Japan Academy, Series A, Mathematical Sciences

Referencias bibliográficas

  • [1] Ailing, N. L. and Greenleaf, N.: Foundations of the theory of Klein surfaces. Lect. Notes in Math., vol. 219, Springer (1971).
  • [2] Bujalance, E., Etayo, J. J., and Gamboa, J. M.: Superficies de Klein elipticas-hiperelipticas. Mem. R. Acad. Ci. (to appear).
  • [3] Bujalance, E., Etayo, J. J., and Gamboa, J. M.: Groups of automorphisms of hyperelliptic Klein surfaces of genus three. Michigan Math. J., vol. 33 (1986).
  • [4] Bujalance, E. Gamboa, J. M.: Automorphism groups of algebraic curves of Rn of genus two. Arch. Math., 42, 229-237 (1984).
  • [5] Coxeter, H. S. M. and Moser, W. O. J.: Generators and relations for discrete groups. Ergeb. der Math., vol. 14, Springer (4th ed., 1980).
  • [6] Macbeath, A. M.: The classification of non-Euclidean plane crystallographic groups. Canad. J. Math., 19, 1192-1205 (1967).
  • [7] May, C. L.: Automorphisms of compact Klein surfaces with boundary. Pacific J. Math., 59, 199-210 (1975).
  • [8] Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Ph. D. thesis, Univ. of Texas (1975).