Data preprocessing for automatic WMH segmentation with FCNNs
- P. Duque
- J. M. Cuadra
- E. Jiménez
- Mariano Rincón-Zamorano
- José Manuel Ferrández Vicente (dir. congr.)
- José Ramón Álvarez-Sánchez (dir. congr.)
- Félix de la Paz López (dir. congr.)
- Javier Toledo Moreo (dir. congr.)
- Hojjat Adeli (coord.)
Editorial: Springer Suiza
ISBN: 978-3-030-19651-6
Año de publicación: 2019
Páginas: 452-460
Tipo: Capítulo de Libro
Resumen
Automatic segmentation of brain white matter hyperintensities(WMH) is a challenging problem. Recently, the proposals basedon Fully Convolutional Neural Networks (FCNN) are giving very good results, as it is demostrated by the top WMH challenge architectures.However, the problem is non completely solved yet. In this paper we analyze the influence of preprocessing stages of the input data on a fully convolutional network (FCNN) based on the U-NET architecture. Results demostrate that standarization, skull stripping and contrast enhancement significantly influence the results of segmentation.