Visuospatial and Motor Ability Contributions in Primary School Geometry

  1. Laura M. Fernández-Méndez 1
  2. Chiara Meneghetti 2
  3. Agustín Martínez-Molina 3
  4. Irene C. Mammarella 2
  5. María José Contreras 4
  1. 1 Rey Juan Carlos University
  2. 2 University of Padova
  3. 3 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

  4. 4 National Distance Education University
Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2024

Volumen: 45

Número: 1

Tipo: Artículo

DOI: 10.20350/DIGITALCSIC/16046 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

Geometry is a subject frequently associated with mathematical performance or science interest, as well as with reasoning and spatial skills. Within the school context, geometry achievement has been connected with visuospatial abilities but less frequently with motor skills, where the embodied cognition approach seems especially important to explain the emergence of complex cognitive representations based on motor processes. To date, few studies have assessed the contribution of both spatial and motor abilities to predict geometry performance. Thus, in this study, we aimed to examine the role of visuospatial (mental rotation and visualization) and motor skills (fine and gross motor skills) in geometry achievement in primary schoolers. A total of 215 students from the second and third year of basic education participated in this study. The participants were enrolled in several tasks that involved spatial, motor and cognitive abilities. A multiple linear regression model showed that the geometry variable was explained by age, mental rotation and manual dexterity at 22%. The results suggest that geometry performance was supported by specific spatial skills (mental rotation) and fine motor ability (as manual dexterity), but not gross motor ones in primary schoolers.

Referencias bibliográficas

  • Bard, C. Fleury, M. Teasdale, N. Paillard, J., & Nougier, V. (1995). Contribution of proprioception for calibrating and updating the motor space. Canadian Journal of Physiology and Pharmacology, 73, 246–254. https://doi.org/10.1139/y95-035
  • Bates, K. E., Gilligan-Lee, K., & Farran, E. K. (2021). Reimagining Mathematics: The Role of Mental Imagery in Explaining Mathematical Calculation Skills in Childhood. Mind, Brain, and Education, 15. https://doi.org/10.1111/mbe.12281
  • Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the relation between spatial and geometric reasoning for elementary and middle school students. In K. S. Mix & M. T. Battista (Eds.), Visualizing Mathematics: The role of spatial reasoning in mathematical thought (pp. 195–228). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-98767-5_10
  • Biancotto, M., Borean, M., Bravar, L., Pelamatti, M.G., & Zoia, S. (2013). Adattamento italiano della Batteria per la Valutaziones Motoria del Bambino. Moment Assessment Battery for Children-2 MABC-2. Firenze: Edizione Giunti O.S.
  • Bornstein, M.H., Hahn, C.S., & Suwalsky, T.D. (2013). Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychological Science, 24, 1906–1917. https://doi.org/10.1177/095679761347997
  • Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM: the international journal on mathematics education, 47(3), 331–343. https://doi.org/10.1007/s11858-014-0637-4
  • Bruininks, R., & Bruininks, B. (2005). Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) (2nd ed.). https://doi.org/10.1037/t14991-000
  • Carlson, A.G., Rowe, E., & Curby, T.W. (2013). Disentangling fine motor skills’ relations to academic achievement: The relative contributions of visual–spatial integration and visual–motor coordination. Journal of Genetic Psychology, 174, 514–533. https://doi.org/10.1080/00221325.2012.717122
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge University Press. https://doi.org/10.1017/CBO9780511571312
  • Cheng, Y-L. & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15 (1), 2-11. https://doi.org/10.1080/15248372.2012.725186
  • Clark, J.E (1994). Motor development. In V.S. Ramachandran (Ed.), Encyclopedia of human behavior (3rd ed). New York: Academic Press, 245 –255.
  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York NY: Macmillan.
  • Da Silva Pacheco, S.C., Gabbard, C., Kittel Ries, L.G., & Godoy Bobbio, T. (2016). Interlimb coordination and academic performance in elementary school children. Pediatrics International, 58, 967–973. https://doi.org/10.1111/ped.12972
  • Danilova, N.N. [Данилова Н. Н.] (1998). Психофизиология: Учебник для вузов. [Psychophisiology: Manual for Universities]. Мoscow. [In Russian].
  • Davies, S., Janus, M., Duku, E., & Gaskin, A. (2016). Using the Early Development Instrument to examine cognitive and non-cognitive school readiness and elementary student achievement. Early Childhood Research Quaterly, 35, 63–75. https://doi.org/10.1016/j.ecresq.2015.10.002
  • Davis, E. E., Pitchford, N. J., & Limback, E. (2011). The interrelation between cognitive and motor development in typically developing children aged 4-11 years is underpinned by visual processing and fine manual control. British journal of psychology, 102(3), 569–584. https://doi.org/10.1111/j.2044-8295.2011.02018.x
  • Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core Knowledge of Geometry in an Amazonian Indigene Group. Science, 311 (5759), 381-384. https://doi.org/10.1126/science.1121739
  • Delgado, A. R. & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25–32. https://doi.org/10.1016/S0160-2896(03)00061-8
  • Diamond, A. (2010). The evidence base for improving school outcomes by addressing the whole child and by addressing skills and attitudes, not just content. Early Education and Development, 21(5), 780–793. https://doi.org/10.1080/10409289.2010.514522
  • Fernandes, V.R., Scipião Ribeiro, M.L., Melo, T., Maciel-Pinheiro, P., Guimarães, T.T., Araujo, N.B. et al. (2016). Motor coordination correlates with academic achievement and cognitive function in children. Frontiers in Psychology, 7:318. https://doi.org/10.3389/fpsyg.2016.00318
  • Fernández-Méndez, L. M., Contreras, M. J., Mammarella, I. C., Feraco, T., & Meneghetti, C. (2020). Mathematical achievement: the role of spatial and motor skills in 6-8 year-old children. PeerJ, 8, e10095. https://doi.org/10.7717/peerj.10095
  • Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465–1484. https://doi.org/10.1007/s00426-018-1008-5
  • Frick, A. & Möhring, W. (2016). A matter of balance: Motor control is related to children's spatial and proportional reasoning skills. Frontiers in Psychology, 6: 2049. https://doi.org/10.3389/fpsyg.2015.02049
  • Geertsen, S.S., Thomas, R., Larsen, M.N., Dahn, I.M., Andersen, J.N., Krause-Jensen, M., et al. (2016). Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS One, 11: e0161960. https://doi.org/10.1371/journal.pone.0161960
  • Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C., & Farran, E. K. (2019). The developmental relations between spatial cognition and mathematics in primary school children. Developmental Science, 22(4), Article e12786. https://doi.org/10.1111/desc.12786
  • Gilligan, K. A., Thomas, M., & Farran, E. K. (2020). First demonstration of effective spatial training for near transfer to spatial performance and far transfer to a range of mathematics skills at 8 years. Developmental science, 23(4), e12909. https://doi.org/10.1111/desc.12909
  • Grissmer, D., Grimm, K.J., Aiyer, S.M., Murrah, W.M., & Steele, J.S. (2010). Fine motor skills and early comprehension of the world: two new school readiness indicators. Developmental Psychology, 46(5), 1008–1017. https://doi.org/10.1037/a0020104
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental Psychology, 48(5), 1229-1241. https://doi.org/10.1037/a0027433
  • Haapala, E.A., Poikkeus, A.M., Tompuri, T., Kukkonen-Harjula, K., Leppänen, P.H., Lindi, V., et al. (2014). Associations of motor and cardiovascular performance with academic skills in children. Medicine and science in sports and exercise, 46(5), 1016–1024. https://doi.org/10.1249/MSS.0000000000000186
  • Harris, D., Lowrie, T., Logan, T., & Hegarty, M. (2021). Spatial reasoning, mathematics, and gender: Do spatial constructs differ in their contribution to performance? The British journal of educational psychology, 91(1), 409–441. https://doi.org/10.1111/bjep.12371
  • Hawes, Z., Gilligan-Lee, K.A., & Mix, K.S. (2022). Effects of Spatial Training on Mathematics Performance: A Meta-Analysis. Developmental Psychology, 58(1), 112 – 137. https://doi.org/10.1037/dev0001281
  • Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: effects of a 32-week intervention. Cognition and Instruction, 35, 236–264. https://doi.org/10.1080/07370008.2017.1323902
  • Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 68–90. https://doi.org/10.1016/j.cogpsych.2018.12.002
  • Henderson, S.E., Sugden, D.A., & Barnett, A. (2007). Movement Battery for Children-2 (Movement ABC2). Examiner’s Manual. London: Pearson Assessment. https://doi.org/10.1037/t55281-000
  • Jansen, P., & Kellner, J. (2015). The role of rotational hand movements and general motor ability in children's mental rotation performance. Frontiers in psychology, 6, 984. https://doi.org/10.3389/fpsyg.2015.00984
  • Kim, H., Duran, C.A.K., Cameron, C.E., & Grissmer, D. (2018). Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills. Child Development, 89(2), 476-494. https://doi.org/10.1111/cdev.12752
  • Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Havard University Press. Lanfranchi, S., Cornoldi, C., & Vianello, R. (2004). Verbal and visuospatial working memory deficits in children with Down syndrome. American journal of mental retardation: AJMR, 109(6), 456–466.
  • Lakoff, G. & Núñez, R. (2000). Where mathematics comes from: How the embodied brings mathematics into being. New York: Basic Books.
  • Linn, M.C. & Petersen, A.C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479–1498. https://doi.org/10.2307/1130467
  • Logan S.W., Robinson, L.E., Rudisill, M.E., Wadsworth, D.D., & Morera, M. (2012). The comparison of school-age children’s performance on two motor assessments: the Test of Gross Motor. Development and the Movement Assessment Battery for Children. Physical Education and Sport Pedagogy, 19, 48–59. https://doi.org/10.1080/17408989.2012.726979
  • Lohman, D. F. (1996). Spatial ability and g. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and measurement (pp. 97-116). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Lopes, L., Santos, R., Pereira, B., & Lopes, V.P. (2013). Associations between gross motor coordination and academic achievement in elementary school children. Human movement science, 32(1), 9–20. https://doi.org/10.1016/j.humov.2012.05.005
  • Lourenco, S. F., Cheung, C. N., & Aulet, L. S. (2018). Is visuospatial reasoning related to early mathematical development? A critical review. In A. Henik, & W. Fias (Eds.) Heterogeneity of function in numerical cognition (pp. 177–210). Elsevier. https://doi.org/10.1016/B978-0-12-811529-9.00010-8
  • Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729–751. https://doi.org/10.1080/15248372.2019.1653298
  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. The British Journal of Educational Psychology, 87(2), 170–186. https://doi.org/10.1111/bjep.12142
  • Lowrie, T., Logan, T., Harris, D., & Hegarty, M. (2018). The impact of an intervention program on students’ spatial reasoning: Student engagement through mathematics-enhanced learning activities. Cognitive Research: Principles and Implications, 3(1), Article 50. https://doi.org/10.1186/s41235-018-0147-y
  • Luo, Z., Jose, P.E., Huntsinger, C.S., &Pigott, T.D. (2007). Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. British Journal of Developmental Psychology, 25, 595–614. https://doi.org/10.1348/026151007X185329
  • Makofske, B. (2011). Manual Dexterity. In J.S. Kreutzer, J. DeLuca, & B. Caplan (eds), Encyclopedia of Clinical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79948-3_1460
  • Mammarella, I. C., Todeschini, M., Englaro, G., Lucangeli, & Cornoldi, C. (2012). Geometria test [Test of geometry]. Trento, Italy: Erickson.
  • Mix, K.S., Cheng, Y.-L., Hambrick, D.Z., Levine, S.C., Young, C., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227. https://doi.org/10.1037/xge0000182
  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Stockton, J. D., & Bower, C. (2021). Effects of spatial training on mathematics in first and sixth grade children. Journal of Educational Psychology. https://doi.org/10.1037/edu0000494
  • Morales, J., Gonzalez, L.M., Guerra, M., Virgili, C., & Unnithan, V. (2011). Physical activity, perceptualmotor performance, and academic learning in 9- to-16-years-old school children. International Journal of Sport Psychology, 42(4), 401–415.
  • Muthén, L.K. & Muthén, B.O. (2014). Mplus User’s Guide. Seventh Edition. Los Angeles, CA: Muthén & Muthén.
  • Nathan, M.J., Schenck, K. E., Vinsonhaler, R., Michaelis, J.E., Swart, M.I., & Waskington, C. (2021). Embodied Geometric Reasoning: Dynamic Gestures During Intuition, Insight, and Proof. Journal of Educational Psychology, 113 (9), 929 – 948. https://doi.org/10.1037/edu0000638
  • National Council of Teachers of Mathematics. (27 september 2023). Principles and Standards for school Geometry. https://www.nctm.org/Standards-and-Positions/Principles-and-Standards/Geometry/OECD (2019). PISA 2018 Assessment and Analytical Framework. OECD Publishing, Paris, https://doi.org/10.1787/b25efab8-en
  • Orsini, A., Pezzuti, L., & Picone, L. (2013). WISC-IV. Contributo alla taratura Italiana. [WISC-IV Italian Edition]. Firenze, Italy: Giunti, OS.
  • Payne, V.G. & Isaacs, L.D. (2008). Human motor development. New York: McGraw-Hill. https://doi.org/10.4324/9781315213040
  • Pittalis, M. & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75,191–212. https://doi.org/10.1007/s10649-010-9251-8
  • Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 387–399.https://doi.org/10.1080/01443410120090786
  • Reynolds, C.R., & Kamphaus, R.W. (2003). RIAS: Reynolds Intellectual Assessment Scales. Lutz, FL. Psychological Assessment Resources, Inc.
  • Rodán, A., Contreras, M.J., Elosúa, M.R., & Gimeno, P. (2016). Experimental but not sex differences of a mental rotation training program on adolescents. Frontiers in Psychology, 7:1050. https://doi.org/10.3389/fpsyg.2016.01050
  • Rodán, A., Gimeno, P., Elosúa, M. R., Montoro, P. R., & Contreras, M. J. (2019). Boys and girls gain in spatial, but not in mathematical ability after mental rotation training in primary education. Learning and Individual Differences, 70, 1–11. https://doi.org/10.1016/j.lindif.2019.01.001
  • Santamaría, P. (6-9 February 2007). Diseño de la adaptación española del RIAS: una nueva herramienta para la evaluación de la inteligencia y la memoria [Poster]. X Congreso de Metodología de las Ciencias Sociales y de la Salud, Barcelona, España.
  • Schifter, D., Bastable, V, & Russell, S.J. (2002). Examining Features of Shape: Casebook. Parsippany, NJ: Dale Seymour.
  • Shapiro, L. (2019). New problems of philosophy: Embodied cognition (2nd ed.). New York, NY: Routledge/Taylor & Francis Group. http://dx.doi.org/10.4324/9780203850664
  • Smith, C. & Neumann, M. (2014). Scratch it out! Enhancing Geometrical Understanding. Teaching Children Mathematics, 21(3), 185-188. ttps://doi.org/10.5951/teacchilmath.21.3.0185
  • Sorby, S. & Panther, G. (2020). Is the key to better PISA math scores improving spatial skills? Mathematics Education Research Journal. 32 (4), 1-21. https://doi.org/10.1007/s13394-020-00328-9
  • Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147–181. https://doi.org/10.1016/B978-0-12-394293-7.00004-2
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2014). Finding the missing piece: Blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7–13. https://doi.org/10.1016/j.tine.2014.02.005
  • Verdine, B. N., Golinkoff, R. M., Hirsh‐Pasek, K., & Newcombe, N. S. (2017). I. Spatial skills, their development, and their links to mathematics. Monographs of the Society for Research in Child Development, 82(1), 7-30. https://doi.org/10.1111/mono.12280
  • Wechsler, D., Kaplan, E., Fein, D., Kramer, J., Morris, R., Delis, D., & Maerlender, A. (2004). WISC–IV:Wechsler Intelligence Scale for Children integrated technical and interpretive manual (4th ed.). Minneapolis, MN: Pearson.
  • Westendorp, M., Hartman, E., Houwen, S., Smith, J., & Visscher, C. (2011). The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in Developmental Disabilities, 32(6), 2773–2779. https://doi.org/10.1016/j.ridd.2011.05.032
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636. http://dx.doi.org/10.3758/BF03196322
  • Wu, H. K. & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492. https://doi.org/10.1002/sce.10126