Composición fotográfica mediante el uso de un dron

  1. Sánchez García, Juan Miguel 1
  2. Sánchez Moreno, José 1
  3. Moreno Salinas, David 1
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Journal:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Year of publication: 2024

Issue: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10702 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Abstract

The photographic composition, commonly known as mosaics, holds particular significance in applications where capturing the entirety of large surfaces in a single frame is impractical. Thus, it necessitates taking photographs of smaller sections and subsequently composing them to achieve a faithful reproduction of reality. This work presents the outcome of applying the principles of the various stages required to create a mosaic, augmented using a drone for image capture. Creating a mosaic involves advanced image processing techniques that enable feature detection, geometric transformation, and pixel alignment. However, experimentation with different algorithms has revealed that finding a geometric transformation that yields a quality mosaic is not always feasible, particularly when the characteristics of the photographs are suboptimal, partly due to the resolution of the photographic devices used.

Bibliographic References

  • Burt, P. J., Adelson, E. H., 1983. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2, 217-236. DOI: 10.1145/245.247 DOI: https://doi.org/10.1145/245.247
  • Ghosh, D., Kaabouch, N. 2015. A survey on image mosaicing techniques. Journal of Visual Communication and Image Representation 34, 1-11. DOI: 10.1016/j.jvcir.2015.10.014 DOI: https://doi.org/10.1016/j.jvcir.2015.10.014
  • Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press, New York. DOI: https://doi.org/10.1017/CBO9780511811685
  • Lowe, D.G., 2004. Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60, 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94 DOI: https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Pandey, A., Pati, U.C., 2019. Image mosaicking: a deeper insight. Image and Vision Computing 89, 236–257. DOI: 10.1016/j.imavis.2019.07.002 DOI: https://doi.org/10.1016/j.imavis.2019.07.002
  • Mistry, D., Banerjee, A., 2017. Comparison of feature detection and matching approaches: SIFT and SURF. Global Research and Development Journal for Engineering 2, 7-13.
  • Nagabhushan, P., Jathana, V.E., 2015. Mosaicing of text contents from consecutive frames in pedestal shot videos. International Journal of Engineering Research and Technology 4, 1006-1013. DOI: 10.17577/ijertv4is070808 DOI: https://doi.org/10.17577/IJERTV4IS070808
  • Rosten, E., Drummond, T., 206. Machine learning for high-speed corner detection. European Conference on Computer Vision 1, 430-443. DOI: 10.1007/11744023_34 DOI: https://doi.org/10.1007/11744023_34
  • Sakharkar, V., Gupta, S.R., 2013. Image Stitching Techniques-An overview. Int. J. Comput. Sci. Appl, 6(2), 324-330
  • Szeliski, R., 2022. Computer Vision: Algorithms and Applications. Springer. DOI: https://doi.org/10.1007/978-3-030-34372-9
  • Zagrouba, E., Barhoumi, W., Amri, S. 2009. An efficient image-mosaicing method based on multifeatured matching. Machine and Vision Applications 20, 139-162. DOI: 10.1007/s00138-007-011 DOI: https://doi.org/10.1007/s00138-007-0114-y