Francisco
Ureña Prieto
Publications dans lesquelles il/elle collabore avec Francisco Ureña Prieto (64)
2024
-
On the Comparison of Two Meshless Finite Difference Methods for Solving Shallow Water Equations
Bulletin of the Iranian Mathematical Society, Vol. 50, Núm. 1
-
Solving nonlinear Fisher–Kolmogorov–Petrovsky–Piskunov equation using two meshless methods
Computational Particle Mechanics
2023
-
A spatio-temporal fully meshless method for hyperbolic PDEs
Journal of Computational and Applied Mathematics, Vol. 430
-
Two finite difference methods for solving the Zakharov–Kuznetsov-Modified Equal-Width equation
Engineering Analysis with Boundary Elements, Vol. 153, pp. 213-225
2022
-
A Novel Spatio-Temporal Fully Meshless Method for Parabolic PDEs
Mathematics, Vol. 10, Núm. 11
-
Introducción al método de los elementos finitos
UNED - Universidad Nacional de Educación a Distancia
-
Introducción al método de los elementos finitos
UNED - Universidad Nacional de Educación a Distancia
-
Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method
Mathematics, Vol. 10, Núm. 3
2021
-
An effective numeric method for different formulations of the elastic wave propagation problem in isotropic medium.
Applied Mathematical Modelling, Vol. 96, pp. 480-496
-
Convergence and numerical simulations of prey-predator interactions via a meshless method
Applied Numerical Mathematics, Vol. 161, pp. 333-347
-
Convergence and numerical solution of a model for tumor growth
Mathematics, Vol. 9, Núm. 12
-
On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
Computational Particle Mechanics, Vol. 8, Núm. 3, pp. 625-636
-
Solving Eikonal equation in 2D and 3D by generalized finite difference method
Computational and Mathematical Methods
-
Solving Monge-Ampère equation in 2D and 3D by Generalized Finite Difference Method
Engineering Analysis with Boundary Elements, Vol. 124, pp. 52-63
-
Solving a reaction–diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence
Journal of Computational and Applied Mathematics, Vol. 389
2020
-
Complex ginzburg–landau equation with generalized finite differences
Mathematics, Vol. 8, Núm. 12, pp. 1-13
-
Non-linear Fokker-Planck equation solved with generalized finite differences in 2D and 3D
Applied Mathematics and Computation, Vol. 368
-
On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences
Engineering Analysis with Boundary Elements, Vol. 113, pp. 181-190
-
Solving a chemotaxis–haptotaxis system in 2D using Generalized Finite Difference Method
Computers and Mathematics with Applications, Vol. 80, Núm. 5, pp. 762-777
-
Solving second order non-linear hyperbolic PDEs using generalized finite difference method (GFDM)
Journal of Computational and Applied Mathematics, Vol. 363, pp. 1-21