LearningMLA Tool to Foster Computational Thinking Skills Through Practical Artificial Intelligence Projects

  1. Rodríguez García, Juan David
  2. Moreno-León, Jesús
  3. Román-González, Marcos 1
  4. Robles, Gregorio 2
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

  2. 2 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

Journal:
RED: revista de educación a distancia

ISSN: 1578-7680

Year of publication: 2020

Issue Title: Pensamiento Computacional (II)

Volume: 20

Issue: 63

Type: Article

DOI: 10.6018/RED.410121 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

More publications in: RED: revista de educación a distancia

Abstract

The use of artificial intelligence systems in multiple levels of society offers new and thriving opportunities, but also introduces new risks and ethical issues that should be dealt with. We argue that the introduction of artificial intelligence contents at schools through practical, hands-on, projects is the way to go in order to educate conscientious and critical citizens, to awaken vocations among youth people, as well as to foster students’ computational thinking skills. However, most existing programming platforms for education lack some required features to develop complete AI projects and, consequently, new tools are required. In this paper we present LearningML, a new platform aimed at learning supervised Machine Learning, one of the most successful AI techniques that is in the basis of almost every current AI application. This work describes the main functionalities of the tool and discusses some decisions taken during its design, for which we took into account the lessons learned while reviewing previous works carried out for introducing AI in school and from the analysis of other solutions that enable practical AI projects. The next steps in the development of LearningML are also presented, which are focused on both the face and instructional validation of the tool.

Funding information

This work has been co-funded by the Madrid Regional Government, through the project e-Madrid-CM (P2018/TCS-4307). The e-Madrid-CM project is also co-financed by the Structural Funds (FSE and FEDER).

Funders

Bibliographic References

  • Ali, S., Payne, B. H., Williams, R., Park, H. W., & Breazeal, C. (2019). Constructionism, Ethics, and Creativity: Developing Primary and Middle School Artificial Intelligence Education. 4.
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver: American Educational Research Association., 1, 25.
  • Brummelen, J. V., Shen, J. H., & Patton, E. W. (2019). The Popstar, the Poet, and the Grinch: Relating Artificial Intelligence to the Computational Thinking Framework with Block-based Coding. Proceedings of International Conference on Computational Thinking Education 2019. Hong Kong: The Education University of Hong Kong, 2.
  • Burton, E., Goldsmith, J., Koenig, S., Kuipers, B., Mattei, N., & Walsh, T. (2017). Ethical Considerations in Artificial Intelligence Courses. AI Magazine, 38(2), 22–34. https://doi.org/10.1609/aimag.v38i2.2731
  • Dahlbäck, N., Jönsson, A., & Ahrenberg, L. (1993). Wizard of Oz studies—Why and how. Knowledge-Based Systems, 6(4), 258–266. https://doi.org/10.1016/0950-7051(93)90017-N
  • Druga, S. (2018). GROWING UP WI TH AI Cognimates: From coding to teaching machines. Massachusetts Institute of Technology.
  • Estevez, J., Garate, G., & Graña, M. (2019). Gentle Introduction to Artificial Intelligence for High-School Students Using Scratch. IEEE Access, 7, 179027–179036. https://doi.org/10.1109/ACCESS.2019.2956136
  • Estevez, J., Garate, G., Guede, J. L., & Graña, M. (2019). Using Scratch to Teach Undergraduate Students’ Skills on Artificial Intelligence. ArXiv:1904.00296 [Cs]. http://arxiv.org/abs/1904.00296
  • Hein, G. (2016, January 6). Constructivist Learning Theory. Exploratorium. https://www.exploratorium.edu/education/ifi/constructivist-learning
  • Hitron, T., Orlev, Y., Wald, I., Shamir, A., Erel, H., & Zuckerman, O. (2019). Can Children Understand Machine Learning Concepts?: The Effect of Uncovering Black Boxes. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, 1–11. https://doi.org/10.1145/3290605.3300645
  • Hitron, T., Wald, I., Erel, H., & Zuckerman, O. (2018). Introducing Children to Machine Learning Concepts Through Hands-on Experience. Proceedings of the 17th ACM Conference on Interaction Design and Children, 563–568. https://doi.org/10.1145/3202185.3210776
  • Kahn, K., & Winters, N. (2017). Child-Friendly Programming Interfaces to AI Cloud Services. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 566–570). Springer International Publishing. https://doi.org/10.1007/978-3-319-66610-5_64
  • Lane, D. (2018). Explaining Artificial Intelligence. Hello World, 4, 44–46.
  • Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018). Developing a Framework for Computational Thinking from a Disciplinary Perspective. Proceedings of the International Conference on Computational Thinking Education 2018. Hong Kong: The Education University of Hong Kong, 5.
  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955, August 31). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.
  • Ministerio de Ciencia, Innovación y Universidades. (2019). Estrategia Española de I+D+I En Inteligencia Artificial. Ministerio de Ciencia, Innovación y Universidades, 2019. Gobierno de España. http://www.ciencia.gob.es/stfls/MICINN/Ciencia/Ficheros/Estrategia_Inteligencia_Artificial_IDI.pdf
  • Moreno, J., Robles, G., Román, M., & Rodríguez, J. D. (2019). No es lo mismo: Un análisis de red de texto sobre definiciones de pensamiento computacional para estudiar su relación con la programación informática: Not the same: a text network analysis on computational thinking definitions to study its relationship with computer programming. Revista Interuniversitaria de Investigación En Tecnología Educativa. https://doi.org/10.6018/riite.397151
  • Pedró Francesc, Subosa Miguel, RIvas Axel, & Valverde Paula. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development—UNESCO Biblioteca Digital (UNESCO Working Papers on Education Policy). UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994?locale=es
  • Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779
  • Rodríguez-García, J. D., Moreno-León, J., Román-González, M., & Robles, G. (2019). Developing Computational Thinking at School with Machine Learning: An exploration. 6.
  • Simmons, C., & Holliday, M. A. (2019). A Comparison of Two Popular Machine Learning Frameworks. The Journal of Computing Sciences in Colleges.
  • Tang, D. (2019). Empowering novices to understand and use machine learning with personalized image classification models, intuitive analysis tools, and MIT App Inventor [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/123130
  • The Design-Based Research Collective. (2003). Design-Based Research: An Emerging Paradigm for Educational Inquiry. Educational Researcher, 32(1), 5–8. https://doi.org/10.3102/0013189X032001005
  • Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What Should Every Child Know about AI? Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9795–9799. https://doi.org/10.1609/aaai.v33i01.33019795
  • Touretzkyds/ai4k12. (n.d.). GitHub. Retrieved 7 January 2020, from https://github.com/touretzkyds/ai4k12
  • Tuomi Ilkka. (2019). The Impact of Artificial Intelligence on Learning, Teaching, and Education. Joint Research Centre (JRC). European Union. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC113226/jrc113226_jrcb4_the_impact_of_artificial_intelligence_on_learning_final_2.pdf