Propiedades del punto de continuidad en espacios de banach que no contienen l1
- Soler Arias, José Antonio
- Ginés López Pérez Director
Universidade de defensa: Universidad de Granada
Fecha de defensa: 09 de marzo de 2012
- Juan Francisco Mena Jurado Presidente/a
- Armando Reyes Villena Muñoz Secretario/a
- Bernardo Cascales Salinas Vogal
- Jordi López Abad Vogal
- Manuel González Ortiz Vogal
Tipo: Tese
Resumo
Esta tesis se enmarca dentro de la teoría de espacios de Banach. Más concretamente estudia las propiedades del punto de continuidad PCP y punto de continuidad convexa CPCP estrechamente relacionadas con la propiedad de Radon-Nikodym RNP. Los resultados principales van en la dirección de caracterizar dichas propiedades, la PCP en términos de árboles y sucesiones acotadamente completas y la CPCP en términos de Pvn-conjuntos. El resultado más destacado consiste en probar que en el ambiente de los espacios sin copias de l1, la CPCP está determinada por subespacios con base, lo que resulta ser una nueva respuesta parcial a un problema propuesto por Jean Bourgain.