Supervised word sense disambiguation facing current challenges

  1. Martínez Iraola, David
Dirigée par:
  1. Eneko Agirre Bengoa Directeur/trice

Université de défendre: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 20 décembre 2004

Jury:
  1. Manuel Palomar Sanz President
  2. Nerea Ezeiza Ramos Secrétaire
  3. Mark W. Stevenson Rapporteur
  4. Julio Gonzalo Arroyo Rapporteur
  5. Diana Mccarthy Rapporteur

Type: Thèses

Teseo: 126895 DIALNET

Résumé

Tesi-lan honetan Lengoaia Naturalaren Prozesamenduan (LNP) garrantzia handia duen Hitzen Adiera Desanbiguazioa (HAD) landu da, Zabalki, eta ikuspegi desberdinetatik aztertua izan den arazo honen aurrean, gure ekarpen nagusia desanbiguazio sistema gainbegiratuen azterketa sakona izan da, beraien mugak aztertuz eta konponbideak proposatuz. Sistema gainbegiratuek, eskuz landutako adibideak (hau da, pertsonek gainbegiratutakoak) behar dituzte beraien ereduak algoritmo estatistikoekin ikasteko. Metodo hauek dira azken urteetan hedatu diren ebaluazio-saioetan emaitza onenak lortzen dituztenak hizkuntza guztietarako. Gure lanean, bereziki ondorengo gaiak jorratu ditugu: testuinguruaren errepresentazio aberatsak, datu sakabanaketaren arazoa konpontzeko "leuntze" teknikak, automatikoki adibideak lortzeko metodoak, eta HAD sistemen garraiotasun arazoak.