Cross-view Embeddings for Information Retrieval
- GUPTA, PARTH ALOKKUMAR
- Paolo Rosso Zuzendaria
- Rafael E. Banchs Martínez Zuzendaria
Defentsa unibertsitatea: Universitat Politècnica de València
Fecha de defensa: 2017(e)ko urtarrila-(a)k 27
- Eneko Agirre Bengoa Presidentea
- Julio Gonzalo Arroyo Idazkaria
- Jacob Kamps Kidea
Mota: Tesia
Laburpena
In this dissertation, we deal with the cross-view tasks related to information retrieval using embedding methods. We study existing methodologies and propose new methods to overcome their limitations. We formally introduce the concept of mixed-script IR, which deals with the challenges faced by an IR system when a language is written in different scripts because of various technological and sociological factors. Mixed-script terms are represented by a small and finite feature space comprised of character n-grams. We propose the cross-view autoencoder (CAE) to model such terms in an abstract space and CAE provides the state-of-the-art performance. We study a wide variety of models for cross-language information retrieval (CLIR) and propose a model based on compositional neural networks (XCNN) which overcomes the limitations of the existing methods and achieves the best results for many CLIR tasks such as ad-hoc retrieval, parallel sentence retrieval and cross-language plagiarism detection. We empirically test the proposed models for these tasks on publicly available datasets and present the results with analyses. In this dissertation, we also explore an effective method to incorporate contextual similarity for lexical selection in machine translation. Concretely, we investigate a feature based on context available in source sentence calculated using deep autoencoders. The proposed feature exhibits statistically significant improvements over the strong baselines for English-to-Spanish and English-to-Hindi translation tasks. Finally, we explore the the methods to evaluate the quality of autoencoder generated representations of text data and analyse its architectural properties. For this, we propose two metrics based on reconstruction capabilities of the autoencoders: structure preservation index (SPI) and similarity accumulation index (SAI). We also introduce a concept of critical bottleneck dimensionality (CBD) below which the structural information is lost and present analyses linking CBD and language perplexity. En esta disertación estudiamos problemas de vistas-múltiples relacionados con la recuperación de información utilizando técnicas de representación en espacios de baja dimensionalidad. Estudiamos las técnicas existentes y proponemos nuevas técnicas para solventar algunas de las limitaciones existentes. Presentamos formalmente el concepto de recuperación de información con escritura mixta, el cual trata las dificultades de los sistemas de recuperación de información cuando los textos contienen escrituras en distintos alfabetos debido a razones tecnológicas y socioculturales. Las palabras en escritura mixta son representadas en un espacio de características finito y reducido, compuesto por n-gramas de caracteres. Proponemos los auto-codificadores de vistas-múltiples (CAE, por sus siglas en inglés) para modelar dichas palabras en un espacio abstracto, y esta técnica produce resultados de vanguardia. En este sentido, estudiamos varios modelos para la recuperación de información entre lenguas diferentes (CLIR, por sus siglas en inglés) y proponemos un modelo basado en redes neuronales composicionales (XCNN, por sus siglas en inglés), el cual supera las limitaciones de los métodos existentes. El método de XCNN propuesto produce mejores resultados en diferentes tareas de CLIR tales como la recuperación de información ad-hoc, la identificación de oraciones equivalentes en lenguas distintas y la detección de plagio entre lenguas diferentes. Para tal efecto, realizamos pruebas experimentales para dichas tareas sobre conjuntos de datos disponibles públicamente, presentando los resultados y análisis correspondientes. En esta disertación, también exploramos un método eficiente para utilizar similitud semántica de contextos en el proceso de selección léxica en traducción automática. Específicamente, proponemos características extraídas de los contextos disponibles en las oraciones fuentes mediante el uso de auto-codificadores. El uso de las características propuestas demuestra mejoras estadísticamente significativas sobre sistemas de traducción robustos para las tareas de traducción entre inglés y español, e inglés e hindú. Finalmente, exploramos métodos para evaluar la calidad de las representaciones de datos de texto generadas por los auto-codificadores, a la vez que analizamos las propiedades de sus arquitecturas. Como resultado, proponemos dos nuevas métricas para cuantificar la calidad de las reconstrucciones generadas por los auto-codificadores: el índice de preservación de estructura (SPI, por sus siglas en inglés) y el índice de acumulación de similitud (SAI, por sus siglas en inglés). También presentamos el concepto de dimensión crítica de cuello de botella (CBD, por sus siglas en inglés), por debajo de la cual la información estructural se deteriora. Mostramos que, interesantemente, la CBD está relacionada con la perplejidad de la lengua. En aquesta dissertació estudiem els problemes de vistes-múltiples relacionats amb la recuperació d'informació utilitzant tècniques de representació en espais de baixa dimensionalitat. Estudiem les tècniques existents i en proposem unes de noves per solucionar algunes de les limitacions existents. Presentem formalment el concepte de recuperació d'informació amb escriptura mixta, el qual tracta les dificultats dels sistemes de recuperació d'informació quan els textos contenen escriptures en diferents alfabets per motius tecnològics i socioculturals. Les paraules en escriptura mixta són representades en un espai de característiques finit i reduït, composat per n-grames de caràcters. Proposem els auto-codificadors de vistes-múltiples (CAE, per les seves sigles en anglès) per modelar aquestes paraules en un espai abstracte, i aquesta tècnica produeix resultats d'avantguarda. En aquest sentit, estudiem diversos models per a la recuperació d'informació entre llengües diferents (CLIR , per les sevas sigles en anglès) i proposem un model basat en xarxes neuronals composicionals (XCNN, per les sevas sigles en anglès), el qual supera les limitacions dels mètodes existents. El mètode de XCNN proposat produeix millors resultats en diferents tasques de CLIR com ara la recuperació d'informació ad-hoc, la identificació d'oracions equivalents en llengües diferents, i la detecció de plagi entre llengües diferents. Per a tal efecte, realitzem proves experimentals per aquestes tasques sobre conjunts de dades disponibles públicament, presentant els resultats i anàlisis corresponents. En aquesta dissertació, també explorem un mètode eficient per utilitzar similitud semàntica de contextos en el procés de selecció lèxica en traducció automàtica. Específicament, proposem característiques extretes dels contextos disponibles a les oracions fonts mitjançant l'ús d'auto-codificadors. L'ús de les característiques proposades demostra millores estadísticament significatives sobre sistemes de traducció robustos per a les tasques de traducció entre anglès i espanyol, i anglès i hindú. Finalment, explorem mètodes per avaluar la qualitat de les representacions de dades de text generades pels auto-codificadors, alhora que analitzem les propietats de les seves arquitectures. Com a resultat, proposem dues noves mètriques per quantificar la qualitat de les reconstruccions generades pels auto-codificadors: l'índex de preservació d'estructura (SCI, per les seves sigles en anglès) i l'índex d'acumulació de similitud (SAI, per les seves sigles en anglès). També presentem el concepte de dimensió crítica de coll d'ampolla (CBD, per les seves sigles en anglès), per sota de la qual la informació estructural es deteriora. Mostrem que, de manera interessant, la CBD està relacionada amb la perplexitat de la llengua.