Deep learning approach for negation trigger and scope recognition

  1. Hermenegildo Fabregat
  2. Lourdes Araujo Serna
  3. Juan Martínez Romo
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2019

Número: 62

Páginas: 37-44

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

The automatic detection of negation elements is an active area of study due to its high impact on several natural language processing tasks. This article presents a system based on deep learning and a non-language dependent architecture for the automatic detection of both, triggers and scopes of negation for English and Spanish. The presented system obtains for English comparable results with those obtained in recent works by more complex systems. For Spanish, the results obtained in the detection of negation triggers are remarkable. The results for the scope recognition are similar to those obtained for English.

Información de financiación

This work has been partially supported by the Spanish Ministry of Science and Innovation within the projects PROSA- MED (TIN2016-77820-C3-2-R) and EX- TRAE (IMIENS 2017).

Financiadores

Referencias bibliográficas

  • Bird, S. and E. Loper. 2004. Nltk: The natural language toolkit. In Proceedings of the ACL 2004 on Interactive Poster and
  • Demonstration Sessions, ACLdemo ’04, Stroudsburg, PA, USA. ACL.
  • Cardellino, C. 2016. Spanish Billion Words Corpus and Embeddings, March.
  • Chapman, W. W., W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. Buchanan. 2001a. Evaluation of negation phrases in narrative clinical reports. In Proceedings of the AMIA Symposium, pages 105–109. AMIA.
  • Chapman, W. W., W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. Buchanan. 2001b. A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics, 34(5):301–310.
  • Chapman, W. W., D. Hilert, S. Velupillai, M. Kvist, M. Skeppstedt, B. E. Chapman, M. Conway, M. Tharp, D. L. Mowery, and L. Deleger. 2013. Extending the negex lexicon for multiple languages. Studies in health technology and informatics, 192:677.
  • Chowdhury, M. F. M. and A. Lavelli. 2013. Exploiting the scope of negations and heterogeneous features for relation extraction: A case study for drug-drug interaction extraction. In Proceedings of the 2013 Conference of the North American Chapter of the ACL: Human Language Technologies, pages 765–771. ACL.
  • Cotik, V., V. Stricker, J. Vivaldi, and H. Rodŕıguez Hontoria. 2016. Syntactic methods for negation detection in radiology reports in spanish. In Proceedings of the 15th Workshop on BioNLP 2016: Berlin, Germany, August 12, 2016, pages 156–165. ACL.
  • Councill, I. G., R. McDonald, and L. Velikovich. 2010. What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In Proceedings of the workshop on negation and speculation in NLP, pages 51–59. ACL.
  • Fabregat, H., L. Araujo, and J. MartinezRomo. 2018. Deep learning approach for negation cues detection in spanish. In NEGES 2018: Workshop on Negation in Spanish: Seville, Spain: September 19-21, 2018: proceedings book, pages 43–48.
  • Fancellu, F., A. Lopez, and B. Webber. 2016. Neural networks for negation scope detection. In Proceedings of ACL (Vol. 1: Long Papers), volume 1, pages 495–504. ACL.
  • Fancellu, F., A. Lopez, B. Webber, and H. He. 2017. Detecting negation scope is easy, except when it isn’t. In Proceedings of European Chapter of the ACL: Vol. 2, Short Papers, volume 2, pages 58–63. ACL.
  • Goldin, I. and W. W. Chapman. 2003. Learning to detect negation with ‘not’in medical texts. In Proceedings of the Workshop on Text Analysis and Search for Bioinformatics, ACM SIGIR. ACM SIGIR.
  • Jiménez-Zafra, S. M., R. Morante, M. Martin, and L. A. U. Lopez. 2018. A review of spanish corpora annotated with negation. In Proceedings of the Conference on Computational Linguistics, pages 915–924.
  • Konstantinova, N., S. C. de Sousa, N. P. Cruz, M. J. Maña, M. Taboada, and R. Mitkov. 2012. A review corpus annotated for negation, speculation and their scope. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may. ELRA.
  • Lafferty, J. D., A. McCallum, and F. C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the International Conference on Machine Learning, pages 282–289, San Francisco, CA, USA. ICML.
  • Li, H. and W. Lu. 2018. Learning with structured representations for negation scope extraction. In Proceedings of ACL (Vol. 2: Short Papers), volume 2, pages 533– 539. ACL.
  • Loharja, H., L. Padró, and J. Turmo Borras. 2018. Negation cues detection using crf on spanish product review texts. In NEGES 2018: Workshop on Negation in Spanish: Seville, Spain: September 19-21, 2018: proceedings book, pages 49–54.
  • Padró, L. and E. Stanilovsky. 2012. Freeling 3.0: Towards wider multilinguality. In Proceedings of the Eighth International Conference on Language Resources and Evaluation. LREC.
  • Pyysalo, S., F. Ginter, H. Moen, T. Salakoski, and S. Ananiadou. 2013. Distributional semantics resources for biomedical text processing. In Proceedings of the 5th International Symposium on Languages in Biology and Medicine, pages 39–44. LBM.
  • Ratinov, L. and D. Roth. 2009. Design challenges and misconceptions in named entity recognition. In Proceedings of the Thirteenth Conference on CoNLL, pages 147– 155. ACL.
  • Santos, C. D. and B. Zadrozny. 2014. Learning character-level representations for part-of-speech tagging. In Proceedings of the International Conference on Machine Learning, pages 1818–1826. ICML.
  • Sarawagi, S. and W. W. Cohen. 2005. Semimarkov conditional random fields for information extraction. In Advances in Neural Information Processing Systems 17, pages 1185–1192. NIPS.
  • Savova, G. K., J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. C. Kipper-Schuler, and C. G. Chute. 2010. Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications. Journal of the AMIA, 17(5):507–513.
  • Skeppstedt, M. 2011. Negation detection in swedish clinical text: An adaption of negex to swedish. Journal of Biomedical Semantics, 2(3):S3, Jul.
  • Vincze, V., G. Szarvas, R. Farkas, G. Móra, and J. Csirik. 2008. The bioscope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics, 9(S11):S9.