Sobre el uso de tecnologías de reconocimiento facial en la universidadel caso de la UNED

  1. José L. Aznarte 1
  2. Mariano Melendo Pardo 1
  3. Juan Manuel Lacruz López 1
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Revista:
RIED: revista iberoamericana de educación a distancia

ISSN: 1138-2783

Ano de publicación: 2022

Título do exemplar: La educación en clave audiovisual y multipantalla

Volume: 25

Número: 1

Páxinas: 261-270

Tipo: Artigo

DOI: 10.5944/RIED.25.1.31533 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: RIED: revista iberoamericana de educación a distancia

Resumo

Biometric identification technologies have experienced a boom in recent years, with applications being proposed and implemented in a wide array of fields, including education and, in particular, at the university level. However, in light of recent experiences, it is a fact that such trend might impact learning and teaching processes in unexpected ways. In that sense, we summarize some considerations about the use of biometric identification technologies in general and, particularly, about the use of facial recognition technologies in the framework of remote assessment during the COVID-19 pandemic. We provide a general analysis of the limitations of those technologies, with special attention to the technical, legal and ethical dimensions, and we explore potentially negative consequences of the use of such technologies. As an illustration, the experience of UNED, the biggest university in Spain, with a hybrid face-to-face and remote learning and teaching system, is provided. We expose the decisions taken by this institution to face the challenge of remote examination during the imposed lockdowns due to COVID-19. Given the number of evidences pointing to acute flaws in the technology which might have unpredictable consequences, in any case it is recommended to apply extreme caution in making decisions in this field.

Referencias bibliográficas

  • Agencia Española de Protección de Datos (AEPD) (2020). Informe 0036/2020. Gabinete Jurídico. https://www.aepd.es/es/documento/2020-0036.pdf
  • Andrejevic, M., y Selwyn, N. (2019). Facial recognition technology in schools: critical questions and concerns, Learning, Media and Technology. Learning, Media and Technology Journal. https://doi.org/10.1080/17439884.2020.1686014
  • Apampa, K., Wills, G., y Argles, D. (2010). An Approach to Presence Verification in Summative e-Assessment Security. 2010 International Conference on Information Society, (pp. 647–651). IEEE. https://doi.org/10.1109/i-Society16502.2010.6018836
  • Aznarte, J. L. (2020). Consideraciones éticas en torno al uso de tecnologías basadas en datos masivos en la UNED. RIED. Revista Iberoamericana de Educación a Distancia, 23(2). https://doi.org/10.5944/ried.23.2.26590
  • Aznarte, J. L., y Lacruz, J. M. (10 de febrero de 2021). Vigilancia automática de exámenes: un gran hermano torpe y peligroso. El País. https://elpais.com/educacion/2021-02-10/vigilancia-automatica-de-examenes-un-gran-hermano-torpe-y-peligroso.html
  • Bernal, C. (2014). El principio de proporcionalidad y los derechos fundamentales, 4ª ed., Universidad Externado de Colombia.
  • Blanco-Gonzalo, R., Lunerti, C., Sanchez Reillo, R., y Guest, R. M. (2018), Biometrics: Accessibility challenge or opportunity? Plos One. https://doi.org/10.1371/journal.pone.0196372
  • Crawford, K., Dobbe, R., Dryer, T., Fried, G., Green, B., Kaziunas, E., Kak, A., Mathur, V., McElroy, E., Nill Sánchez, A., Raji, D., Rankin, J. L., Richardson, R., Schultz, J., Myers West, S., y Whittaker, M. (2019). AI Now 2019 Report. New York: AI Now Institute. https://ainowinstitute.org/AI_Now_2019_Report.html.
  • Dewan, M., Akber, A., Murshed, M., y Lin, F. (2019). Engagement Detection in Online Learning: A Review. Smart Learning Environments 6(1). https://doi.org/10.1186/s40561-018-0080-z
  • Doffman, Z. (2018). Why facial recognition in schools seems to be an aimless recipe for disaster. Forbes, 7th November. https://www.forbes.com/sites/zakdoffman/2018/11/07/why-facial-recognition-in-schools-seems-to-be-an-aimless-recipefordisaster/#7abc4f01a83a
  • Ferguson, A. G. (2021). Facial Recognition and the Fourth Amendment. Minnesota Law Review. https://minnesotalawreview.org/article/facial-recognition-and-the-fourth-amendment/
  • García-Peñalbo, F. J., Corell, A., Abella-García, V., y Grande M. (2020). La evaluación online en la educación superior en tiempos de la COVID-19. Education in the Knowledge Society, 21. https://doi.org/10.14201/eks.23086
  • Günther, H. L. (1983). Strafrechtswidrigkeit und Strafunrechtsausschluss: Studien zur Rechtswidrigkeit als Straftatmerkmal un zur Funktion der Rechtfertigungsgründ im Strafrecht. Carl Heymanns Verlag.
  • Hernández, J., Ortiz, A., Andaverde, J., y Burlak, G. (2008). Biometrics in Online Assessments: A Study Case in High School Students. 18th International Conference on Electronics, Communications and Computers (conielecomp 2008), (pp. 111-116). IEEE. https://doi.org/10.1109/CONIELECOMP.2008.36
  • Izquierdo, M. (2020). La utilización policial de los sistemas de reconocimiento facial automático. Comentario a la sentencia del Alto Tribunal de Justicia de Inglaterra y Gales de 4 de septiembre de 2019. IUS ET VERITAS, 60. https://doi.org./10.18800/iusetveritas.202001.004
  • Lascuraín, J. A. (2020). El principio de proporcionalidad penal: cinco retos (I). https://almacendederecho.org/el-principio-de-proporcionalidad-penal-cinco-retos-i
  • Lee, T. (2016). Biometrics and disability rights: legal compliance in biometric identification programs. Journal of Law, Technology & Policy. http://illinoisjltp.com/journal/wp-content/uploads/2016/11/Lee.pdf
  • Martínez, R. (2020). Tecnología de verificación de identidad y control en exámenes online. Revista de Educación y Derecho, 22. https://doi.org/10.1344/REYD2020.22.32357
  • Montag, L., Mcleod, R., De Mets, L., Gauld, M., Rodger, F., y Petka, M. (2021). The rise and rise of biometrics mass surveillance in the EU. A legal analysis of biometrics mass surveillance practices in Germany, The Netherlands, and Poland. EDRi. http://edri.org/wp-content/uploads/2021/07/EDRI_RISE_REPORT.pdf
  • Montgomery, J., y Marais, A. (2014). Educational Content Access Control System. U.S. Patent Application 14/212,069, filed September 18, 2014.
  • Navarro, I. (2010). El principio de proporcionalidad en sentido estricto: ¿principio de proporcionalidad entre el delito y la pena o balance global de costes y beneficios? InDret Penal. https://indret.com/wp-content/themes/indret/pdf/724.pdf
  • Perelló, I. (1997). El principio de proporcionalidad y la jurisprudencia constitucional. Jueces para la Democracia. https://dialnet.unirioja.es/servlet/articulo?codigo=174691
  • Poh, N., Blanco-Gonzalo, R., Wong, R., y Sánchez Reillo, R. (2016), Blind subjects faces database. IET. https://doi.org/10.1049/iet-bmt.2015.0016
  • Roca, E. (2013). Los principios de razonabilidad y proporcionalidad en la jurisprudencia constitucional española. Reunión de Tribunales Constitucionales de Italia, Portugal y España. https://www.tribunalconstitucional.es/es/trilateral/documentosreuniones/37/ponencia%20espa%C3%91a%202013.pdf
  • Rodicio-García, M., Ríos-de-Deus, M., Mosquera-González, M., y Penado Abilleira, M. (2020). La Brecha Digital en Estudiantes Españoles ante la Crisis de la Covid-19. Revista Internacional de Educación para la Justicia Social, 9(3). https://doi.org/10.15366/riejs2020.9.3.006
  • Stark, L. (2019). Facial Recognition is the Plutonium of AI. XRDS - Crosswords (ACM), April 2019. https://doi.org/10.1145/3313129
  • Valera, J., Valera, J., y Gelogo, Y. (2015). A Review on Facial Recognition for Online Learning Authentication, 8th International Conference on Bio-Science and Bio-Technology (BSBT), Jeju, 16-19. https://doi.org/10.1109/BSBT.2015.15