El talento STEM en la educación obligatoriauna revisión sistemática

  1. Mª Pilar Herce-Palomares
  2. Marcos Román González
  3. Carmen Jiménez Fernández
Revista:
Revista de educación

ISSN: 0034-8082

Año de publicación: 2022

Número: 396

Páginas: 65-96

Tipo: Artículo

DOI: 10.4438/1988-592X-RE-2022-396-530 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de educación

Resumen

El talento STEM (ciencia, tecnología, ingeniería y matemáticas) es un tema de plena actualidad en la investigación tanto por la renovada comprensión de las altas capacidades en dominios específicos del talento, como por el reciente interés hacia la educación STEM. Esta investigación conduce una revisión sistemática para indagar en un talento específico, el talento STEM. Se pretende ilustrar su trayectoria durante la educación obligatoria. En concreto, se busca conocer el estado de la investigación del campo, los conjuntos de variables personales y situacionales que inciden en la trayectoria del talento STEM durante la educación obligatoria, la identificación de las metodologías más pertinentes para la promoción del talento STEM y los hitos/estadios que atraviesa el alumnado durante este momento madurativo. Para ello, a partir de las directrices de la declaración PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) y de la colaboración Campbell se elaboró un protocolo para esta revisión de la investigación. Tras su aplicación se obtienen un total de 225 estudios, de los que finalmente se incluyen 108 tras la revisión de los criterios de elegibilidad. Se concluye cómo se encuentra la investigación del campo, un conjunto de variables disposicionales (cognitivas, psicosociales y demográficas) y contextuales (en la educación formal, no formal y en otros escenarios) que interaccionan entre ellas para favorecer o dificultar el curso de la trayectoria; que las metodologías hands-on son las más implementadas para favorecer el talento STEM y, por último, unas tenues orientaciones sobre los estadios e hitos que acontecen en la trayectoria del talento STEM, que dibujan nuevas líneas de investigación. Dichos resultados contribuyen a la comprensión sobre las políticas y prácticas educativas más pertinentes para la promoción del talento STEM durante la educación obligatoria, por lo que se proporcionan algunas orientaciones.

Referencias bibliográficas

  • Banks-Hunt, J. M., Adams, S., Ganter, S. y Bohorquez, J. C. (2016). K-12 STEM education: Bringing the engineering maker space, studentcentered learning, curriculum, and teacher training to middle schools. Comunicación presentada en IEEE Frontiers in Education Conference, EEUU. Recuperado de: https://ieeexplore.ieee.org/abstract/
  • document/7757531 https://doi.org/10.1109/FIE.2016.7757531 Beasley, M. A. y Fischer, M.J. (2012). Why they leave: the impact of stereotype threat on the attrition of women and minorities from science, math and engineering majors. Social Psychology of Education, 15(4), 427-448. https://doi.org/10.1007/s11218-012-9185-3
  • Bloom, B. S. (1985). Developing Talent in Young People. Nueva York: Ballantine.
  • Boon Ng. S. (2019). Exploring STEM competences for the 21st century. Recuperado de https://unesdoc.unesco.org/ark:/48223/pf0000368485
  • Burt, B. A. y Johnson, J. T. (2018). Origins of early STEM interest for black male graduate students in engineering: A community cultural wealth perspective. School Science and Mathematics, 118(6), 257-270. https://doi.org/10.1111/ssm.12294
  • Callahan, C. M. y Price, A. (2021). Overcoming Structural Challenges Related to Identification and Curricula for Gifted Students in High- Poverty Rural Schools. En R. J. Sternberg y D. Ambrose (Ed.), Conceptions of Giftedness and Talent (pp. 51-64). Suiza: Springer. https://doi.org/10.1007/978-3-030-56869-6_4
  • Cannady, M. A., Greenwald, E. y Harris, K. N. (2014). Problematizing the STEM pipeline metaphor: Is the STEM pipeline metaphor serving our students and the STEM workforce? Science Education, 98(3), 443-460. https://doi.org/10.1002/sce.21108
  • Dai, D. Y. (2017). Envisioning a new foundation for gifted education: Evolving complexity theory (ECT) of talent development. Gifted Child Quarterly, 61(3), 172-182. https://doi.org/10.1177/0016986217701837
  • Dai, D. Y. (2018). A History of Giftedness: Paradigms and Paradoxes. En S. Pfeiffer, (Ed.), Handbook of Giftedness in Children (2ª Ed., pp. 1-14). Suiza: Springer Cham.
  • Dai, D. Y. (2019). New directions in talent development research: A developmental systems perspective. New Directions for Child and Adolescent Development, 168, 177–197. https://doi.org/10.1002/ cad.20322
  • Dai, D. Y. (2021). Evolving Complexity Theory (ECT) of Talent Development: A New Vision for Gifted and Talented Education. En R. J. Sternberg y D. Ambrose (Eds.), Conceptions of Giftedness and Talent (pp. 99-122). Palgrave Macmillan, Cham. https://doi.org/10.1007/978- 3-030-56869-6
  • European Cooperation in Science and Technology (2007). Meeting the needs of gifted children and adolescents: Towards a European roadmap. Paper presented at the COST Strategic Workshop, Brussels, Belgium, Noviembre.
  • Gagnon, R. J. y Sandoval, A. (2020). Pre-college STEM camps as developmental context: Mediational relations between gender, career decidedness, socioemotional development, and engagement. Children and Youth Services Review, 108, 1-9. https://doi.org/10.1016/j. childyouth.2019.104584
  • Garriott, P. O., Flores, L. Y., Prabhakar, B., Mazzotta, E. C., Liskov, A. C. y Shapiro, J. E. (2014). Parental support and underrepresented students’ math/science interests: The mediating role of learning experiences. Journal of Career Assessment, 22(4), 627-641. https:// doi.org/10.1177/1069072713514933
  • Hausamann, D. (2012). Extracurricular science labs for STEM talent support. Roeper Review, 34(3), 170-182. https://doi.org/10.1080/027 83193.2012.686424
  • Herce, M. P. (en prensa). Desarrollo del talento STEM en la educación obligatoria. Protocolo para una revisión sistemática. En Pérez, J. C. y Ortega, M. C. (Eds), Actas de las VI Jornadas de Doctorandos. Madrid: UNED.
  • Herce, M. P., Román-González, M. y Jiménez, C. (2020). Calidad metodológica, características y desafíos en la investigación sobre el desarrollo del talento STEM en la educación obligatoria. En Bermúdez, M. P. (Ed.), Actas del 8th International Congress of Educational Sciences and Development (pp. 206-207). Pontevedra: Asociación Española de Psicología Conductual (AEPC).
  • Holmes, S., Redmond, A., Thomas, J. y High, K. (2012). Girls helping girls: Assessing the influence of college student mentors in an afterschool engineering program. Mentoring and Tutoring: Partnership in Learning, 20(1), 137-150. https://doi.org/10.1080/13611267.2012.64 5604
  • Ihrig, L. M., Lane, E., Mahatmya, D. y Assouline, S. G. (2018). STEM excellence and leadership program: Increasing the level of STEM challenge and engagement for high-achieving students in economically disadvantaged rural communities. Journal for the Education of the Gifted, 41(1), 24-42. https://doi.org/10.1177/0162353217745158
  • Itzek-Greulich, H., Flunger, B., Vollmer, C., Nagengast, B., Rehm, M. y Trautwein, U. (2015). Effects of a science center outreach lab on school students’ achievement - are student lab visits needed when they teach what students can learn at school? Learning and Instruction, 38, 43- 52. https://doi.org/10.1016/j.learninstruc.2015.03.003
  • Jiménez, C. y Baeza, M. A. (2012). Factores significativos del rendimiento excelente: PISA y otros estudios. Ensaio: Avaliação e Políticas Públicas em Educação, 20(77), 647-676. https://doi.org/10.1590/ s0104-40362012000400003
  • Kmet, L. M., Lee, R. C. y Cook, L. S. (2004). Standard quality assesment criteria for evaluating primary research papers from a variety of fields. Edmonton: AHFMR.
  • Lakin, J. M. y Wai, J. (2020). Spatially gifted, academically inconvenienced: Spatially talented students experience less academic engagement and more behavioural issues than other talented students. British Journal of Educational Psychology 67(1), 1-24. https://doi.org/10.1111/ bjep.12343
  • López-Iñesta, E., Botella, C., Rueda, S., Forte, A. y Marzal, P. (2020). Towards breaking the gender gap in Science, Technology, Engineering and Mathematics. Revista Iberoamericana de Tecnologías del Aprendizaje, 15(3), 233-241. https://doi.org/10.1109/rita.2020.3008114
  • Lubinski, D., Benbow, C. P. y Kell, H. J. (2014). Life paths and accomplishments of mathematically precocious males and females four decades later. Psychological Science, 25(12), 2217-2232. https:// doi.org/10.1177/0956797614551371
  • MacDonald, A. y Huser, C. (2020). Making STEM Visible in Early Childhood Curriculum Frameworks. En A. MacDonald, L.A. Danaia y S. Murphy (Eds), STEM Education Across the Learning Continuum (pp. 87-112). Springer, Singapore. https://doi.org/10.1007/978-981-15-2821-7_6
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J. y Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., . . . Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1-9. https://doi.org/10.1186/2046-4053-4-1
  • Olszewski-Kubilius, P. (2009). Special schools and other options for gifted STEM students. Roeper Review, 32(1), 61-70. https://doi. org/10.1080/02783190903386892
  • Olszewski-Kubilius, P., Steenbergen-Hu, S., Thomson, D. y Rosen, R. (2017). Minority achievement gaps in STEM: Findings of a longitudinal study of Project Excite. Gifted Child Quarterly, 61(1), 20-39. https:// doi.org/10.1177/0016986216673449
  • Olszewski-Kubilius, P., Subotnik, R. F. y Worrell, F. C. (2015). Antecedent and concurrent psychosocial skills that support high levels of achievement within talent domains. High Ability Studies, 26(2), 195- 210. https://doi.org/10.1080/13598139.2015.1095077
  • Olszewski-Kubilius, P., Subotnik R. F. y Worrell, F. C. (2016). Aiming Talent Development Toward Creative Eminence in the 21st Century, Roeper Review, 38(3), 140-152. https://doi.org/10.1080/02783193.201 6.1184497
  • Olszewski-Kubilius, P., Subotnik, R. F., Cassani, L. y Worrell, F. C. (2019). Benchmarking psychosocial skills important for talent development. New Directions for Child and Adolescent Development, 168, 161–176. https://doi.org/10.1002/cad.20318
  • Petticrew, M. y Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Malden: Blackwell.
  • Pérez, L. y Jiménez, C. (2018). Influencia de la organización escolar en la educación de los alumnos de altas capacidades. Enseñanza & Teaching: Revista Interuniversitaria De Didáctica, 36(1), 151-178. https://doi.org/10.14201/et2018361151178
  • Preckel, F., Golle, J., Grabner, R., Jarvin, L., Kozbelt, A., Müllensiefen, D., ... y Worrell, F. C. (2020). Talent development in achievement domains: A psychological framework for within-and cross-domain research. Perspectives on Psychological Science, 15(3), 691-722. https://doi. org/10.1177%2F1745691619895030
  • Robinson, A., Dailey, D., Hughes, G. y Cotabish, A. (2014). The effects of a science-focused STEM intervention on gifted elementary students’ science knowledge and skills. Journal of Advanced Academics, 25(3), 189-213. https://doi.org/10.1177/1932202x14533799
  • Sastre-Riba, S. (2020). Moduladores de la Alta Capacidad Intelectual. Medicina, 80(2), 53-57.
  • Sisman, B., Kucuk, S. y Yaman, Y. (2020). The effects of robotics training on children’s spatial ability and attitude toward STEM. International Journal of Social Robotics,1, 1-11. https://doi.org/10.1007/s12369- 020-00646-9
  • Steenbergen-Hu, S. y Olszewski-Kubilius, P. (2017). Factors that contributed to gifted students’ success on STEM pathways: The role of race, personal interests, and aspects of high school experience. Journal for the Education of the Gifted, 40(2), 99-134. https://doi. org/10.1177/0162353217701022
  • Subotnik, R. F., Edmiston, A. M., Cook, L. y Ross, M. D. (2010). Mentoring for talent development, creativity, social skills, and insider knowledge: The APA catalyst program. Journal of Advanced Academics, 21(4), 714-739. https://doi.org/10.1177/1932202x1002100406
  • Subotnik, R. F. y Jarvin, L. (2005). Beyond expertise: Conceptions of giftedness as great performance. En R. J. Sternberg y J. E. Davidson (Eds.), Conceptions of giftedness (2ª ed., pp. 343–357). Nueva York: Cambridge University Press. https://doi.org/10.1017/ cbo9780511610455.020
  • Subotnik, R. F., Olszewski-Kubilius, P. y Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological science in the public interest, 12(1), 3-54. https://doi.org/10.1177/1529100611418056
  • Subotnik, R. F., Olszewski-Kubilius, P. y Worrell, F. C. (2021). The Talent Development Megamodel: A Domain-Specific Conceptual Framework Based on the Psychology of High Performance. En R. J. Sternberg y D. Ambrose (Eds.), Conceptions of Giftedness and Talent (pp. 425-442). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-56869- 6 Subotnik, R., Orland, M., Rayhack, K., Schuck, J., Edmiston, A., Earle, J., ... y Fuchs, B. (2009). Identifying and developing talent in science, technology, engineering, and mathematics (STEM): An agenda for research, policy, and practice. En L., Shavinina (Ed), International handbook on giftedness (pp. 1313-1326). Nueva York: Springer.
  • Subotnik, R. F. y Rickoff, R. (2010). Should eminence based on outstanding innovation be the goal of gifted education and talent development? Implications for policy and research. Learning and Individual Differences, 20(4), 358-364. https://doi.org/10.1016/j. lindif.2009.12.005
  • Subotnik, R. F., Stoeger, H. y Luo, L. (2019). Exploring compensations for demographic disadvantage in science talent development. New Directions for Child and Adolescent Development, 168, 101–130. https://doi.org/10.1002/cad.20321
  • Tourón, J. (2020). Las Altas Capacidades en el sistema educativo español: reflexiones sobre el concepto y la identificación. Revista de Investigación Educativa, 38(1), 15-32. https://doi.org/10.6018/ rie.396781
  • Türk, N., Kalayci, N. y Yamak, H. (2018). New Trends in Higher Education in the Globalizing World: STEM in Teacher Education. Universal Journal of Educational Research, 6(6), 1286-1304. https://doi.org/10.13189/ ujer.2018.060620
  • VanTassel-Baska, J. y Brown, E. F. (2007). Toward best practice: An analysis of the efficacy of curriculum models in gifted education. Gifted child quarterly, 51(4), 342-358. https://doi.org/10.1177/0016986207306323
  • Yu, H. y Jen, E. (2020). Integrating nanotechnology in the science curriculum for elementary high-ability students in Taiwan: Evidencedbased lessons. Roeper Review-a Journal on Gifted Education, 42(1), 38-48. https://doi.org/10.1080/02783193.2019.1690078
  • Zeng, N., Zhang, B. H. y Wang, Q. (2019). STEM fever: Science educators’ opportunities and challenges. Comunicación presentada en 6th International Conference for Science Educators and Teachers, Tailandia. Recuperado de: https://aip.scitation.org/doi/abs/10.1063/1.5093998
  • Ziegler, A., Debatin, T. y Stoeger, H. (2019). Learning resources and talent development from a systemic point of view. Annals of the New York Academy of Sciences, 1445(1), 39-51. https://doi.org/10.1111/ nyas.14018