Plataforma de exploración de la Composición Semántica apartir de Modelos de Lenguaje pre-entrenados yembeddings estáticos

  1. Adrián Ghajari 1
  2. Víctor Fresno 1
  3. Enrique Amigó 1
  1. 1 1Universidad Nacional de Educación a Distancia (UNED), España
Book:
SEPLN-PD 2022: Annual Conference of the Spanish Association for Natural Language Processing 2022: Projects and Demonstrations
  1. Miguel A. Alonso (ed. lit.)
  2. Margarita Alonso-Ramos (ed. lit.)
  3. Carlos Gómez-Rodríguez (ed. lit.)
  4. David Vilares (ed. lit.)
  5. Jesús Vilares (ed. lit.)

Publisher: CEUR Workshop Proceedings

Year of publication: 2022

Pages: 52-56

Type: Book chapter

Abstract

The computing power growth and the advent of the Transformer model have changed theNLP landscape. Transfer Learning has allowed the posibility of achieving state-of-the-art results at a fractionof the computational cost. In this scope, this work presents the development of a server-client applicationcapable of obtaining contextual and static word vectors from a wide variety of models, operate with them toachieve semantic composition to, lastly, visualize them in a 3-dimensional space and obtain semantic similarity;all of this, while exploiting the hardware resources available.