Generation of social network user profiles and their relationship with suicidal behaviour
ISSN: 1135-5948
Año de publicación: 2024
Número: 72
Páginas: 87-98
Tipo: Artículo
Otras publicaciones en: Procesamiento del lenguaje natural
Resumen
Actualmente el suicidio es una de las principales causas de muerte en el mundo, por lo que poder caracterizar a personas con esta tendencia puede ayudar a prevenir posibles intentos de suicidio. En este trabajo se ha recopilado un corpus, llamado SuicidAttempt en español compuesto por usuarios con o sin menciones explícitas de intentos de suicidio, usando la aplicación de mensajería Telegram. Para cada uno de los usuarios se han anotado distintos rasgos demográficos de manera semi-automática mediante el empleo de distintos sistemas, en unos casos supervisados y en otros no supervisados. Por último se han analizado estos rasgos recogidos, junto con otros lingüísticos extraídos de los mensajes de los usuarios, para intentar caracterizar distintos grupos en base a su relación con el comportamiento suicida. Los resultados sugieren que la detección de estos rasgos demográficos y psicolingüísticos permiten caracterizar determinados grupos de riesgo y conocer en profundidad los perfiles que realizan dichos actos.
Referencias bibliográficas
- Akkaya-Kalayci, T., N. D. Kapusta, D. Winkler, O. D. Kothgassner, C. Popow, and Z. Özlü-Erkilic. 2018. Triggers for attempted suicide in istanbul youth, with special reference to their sociodemographic background. International journal of psychiatry in clinical practice, 22(2):95–100.
- Al Maadeed, S. and A. Hassaine. 2014. Automatic prediction of age, gender, and nationality in offline handwriting. EURASIP Journal on Image and Video Processing, 2014(1):1–10.
- Balouchzahi, F., G. Sidorov, and H. L. Shashirekha. 2021. Adop fert-automatic detection of occupations and profession in medical texts using flair and bert. In Iber-LEF@ SEPLN, pages 747–757.
- Bamman, D., J. Eisenstein, and T. Schnoebelen. 2014. Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2):135–160.
- Choudhury, A. P., P. Shivakumara, U. Pal, and C.-L. Liu. 2022. Eau-net: A new edge-attention based u-net for nationality identification. In International Conference on Frontiers in Handwriting Recognition, pages 137–152. Springer.
- Du, X. 2023. Lexical features and psychological states: A quantitative linguistic approach. Journal of Quantitative Linguistics, pages 1–23.
- Fernandes, A. C., R. Dutta, S. Velupillai, J. Sanyal, R. Stewart, and D. Chandran. 2018. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing. Scientific reports, 8(1):7426.
- Fleiss, J. L. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378.
- Heidari, M., J. H. Jones, and O. Uzuner. 2020. Deep contextualized word embedding for text-based online user profiling to detect social bots on twitter. In 2020 International Conference on Data Mining Workshops (ICDMW), pages 480–487. IEEE.
- Lange, L., H. Adel, and J. Strotgen. 2021. Boosting transformers for job expression extraction and classification in a lowresource setting.
- Lima-López, S., E. Farré-Maduell, A. Miranda-Escalada, V. Brivá-Iglesias, and M. Krallinger. 2021. Nlp applied to occupational health: Meddoprof shared task at iberlef 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts. Procesamiento del Lenguaje Natural, 67:243–256.
- Lopez-Castroman, J., B. Moulahi, J. Azé, S. Bringay, J. Deninotti, S. Guillaume, and E. Baca-Garcia. 2020. Mining social networks to improve suicide prevention: A scoping review. Journal of neuroscience research, 98(4):616–625.
- Losada, D., F. Crestani, and J. Parapar. 2017. erisk 2017: Clef lab on early risk prediction on the internet: Experimental foundations. pages 346–360, 08.
- Mesa-Murgado, J., P. López-Úbeda, M. C. Díaz-Galiano, M. T. M. Valdivia, and L. A. U. López. 2021. BERT representations to identify professions and employment statuses in health data. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021), volume 2943 of CEUR Workshop Proceedings, pages 758–769.
- Parapar, J., P. Mart´ın-Rodilla, D. E. Losada, and F. Crestani. 2023. erisk 2023: Depression, pathological gambling, and eating disorder challenges. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, and A. Caputo, editors, Advances in Information Retrieval, pages 585–592, Cham. Springer Nature Switzerland.
- Piot-Perez-Abadin, P., P. Martin-Rodilla, and J. Parapar. 2021. Gender classification models and feature impact for social media author profiling. In International Conference on Evaluation of Novel Approaches to Software Engineering, pages 265–287. Springer.
- Pizarro, J. 2019. Using n-grams to detect bots on twitter. In CLEF (Working Notes).
- Rancans, E., T. Pulmanis, M. Taube, L. Springe, B. Velika, I. Pudule, and D. Grınberga. 2016. Prevalence and sociodemographic characteristics of self-reported suicidal behaviours in latvia in 2010: a population-based study. Nordic journal of psychiatry, 70(3):195–201.
- Rangel, F., F. Celli, P. Rosso, M. Potthast, B. Stein, W. Daelemans, et al. 2015. Overview of the 3rd author profiling task at pan 2015. In CLEF2015 Working Notes. Working Notes of CLEF 2015-Conference and Labs of the Evaluation forum. Notebook Papers.
- Rangel, F. and P. Rosso. 2019. Overview of the 7th author profiling task at pan 2019: bots and gender profiling in twitter. Working notes papers of the CLEF 2019 evaluation labs, 2380:1–7.
- Rangel, F., P. Rosso, I. Chugur, M. Potthast, M. Trenkmann, B. Stein, B. Verhoeven, and W. Daelemans. 2014. Overview of the 2nd author profiling task at pan 2014. In CLEF 2014 Evaluation Labs and Workshop Working Notes Papers, pages 1–30.
- Rangel, F., P. Rosso, M. Koppel, E. Stamatatos, and G. Inches. 2013. Overview of the author profiling task at pan 2013. In CLEF conference on multilingual and multimodal information access evaluation, pages 352–365. CELCT.
- Rangel, F., P. Rosso, M. Montes-y Gómez, M. Potthast, and B. Stein. 2018. Overview of the 6th author profiling task at pan 2018: multimodal gender identification in twitter. Working notes papers of the CLEF, 192.
- Rosso, P., F. Rangel, M. Potthast, E. Stamatatos, M. Tschuggnall, and B. Stein. 2016. Overview of pan’16: new challenges for authorship analysis: cross-genre profiling, clustering, diarization, and obfuscation. In Experimental IR Meets Multilinguality, Multimodality, and Interaction, pages 332–350. Springer.
- Schwartz, H. A., J. C. Eichstaedt, M. L. Kern, L. Dziurzynski, S. M. Ramones, M. Agrawal, A. Shah, M. Kosinski, D. Stillwell, M. E. Seligman, et al. 2013. Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8(9):e73791.
- Wang, Z., S. Hale, D. I. Adelani, P. Grabowicz, T. Hartman, F. Fl¨ock, and D. Jurgens. 2019. Demographic inference and representative population estimates from multilingual social media data. In The world wide web conference, pages 2056–2067.
- Yang, Y.-C., M. A. Al-Garadi, J. S. Love, J. Perrone, and A. Sarker. 2021. Automatic gender detection in twitter profiles for health-related cohort studies. JAMIA open, 4(2):ooab042.
- Zirikly, A., P. Resnik, O. Uzuner, and K. Hollingshead. 2019. Clpsych 2019 shared task: Predicting the degree of suicide risk in reddit posts. In Proceedings of the sixth workshop on computational linguistics and clinical psychology, pages 24–33.