Interaction Patterns During Block-based Programming Activities Predict Computational Thinking: Analysis of the Differences in Gender, Cognitive Load, Spatial Ability, and Programming Proficiency

  1. Yusuf, Abdullahi 13
  2. Noor, Norah Md 1
  3. Román-González, Marcos 2
  1. 1 School of Education, Universiti Teknologi Malaysia, Malaysia
  2. 2 Faculty of Education, Universidad Nacional de Educación a Distancia, Spain
  3. 3 Department of Science Education, Sokoto State University, Nigeria
Revista:
AI, Computer Science and Robotics Technology

ISSN: 2754-6292

Año de publicación: 2024

Volumen: 3

Tipo: Artículo

DOI: 10.5772/ACRT.36 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: AI, Computer Science and Robotics Technology

Referencias bibliográficas

  • Yusuf A, Noor NM. Revising the computer programming attitude scale in the context of attitude ambivalence. J Comput Assist Learn. 2023a;39(6):1751–1768. doi:10.1111/jcal.12838.
  • Sun L, Liu J. Different programming approaches on primary students’ computational thinking: a multifactorial chain mediation effect. Educ Technol Res Develop. 2023;72: 557–584. doi:10.1007/s11423-023-10312-2.
  • Bau D, Gray J, Kelleher C, Sheldon J and Turbak F. Learnable programming: Blocks and beyond. Commun  ACM. 2017;60: 72–80.  doi: 10.1145/3015455.
  • WeintropD and WilenskyU. Comparing block-based and text-based programming in high school computer science classrooms. ACM Trans Comput Edu. 2017;18(1):1–25. doi: 10.1145/3089799.
  • Angeli C. The effects of scaffolded programming scripts on pre-service teachers’ computational thinking: developing algorithmic thinking through programming robots. Int J Child-Comput Interact. 2022;31: 100329. doi:10.1016/j.ijcci.2021.100329.
  • Fagerlund J, Hakkinen P, Vesisenaho M, Viiri J. Computational thinking in programming with Scratch in primary schools: a systematic review. Comput Appl Eng Educ. 2021;29(1):12–28. doi:10.1002/cae.22255.
  • Sun D, Ouyang F, Li Y, Zhu C. Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education. Int J STEM Educ. 2021;8: 54. doi:10.1186/s40594-021-00311-1.
  • Tikva C, Tambouris EA. Systematic mapping study on teaching and learning computational thinking through programming in higher education. Think Ski Creat. 2021;41: 100849. doi:10.1016/j.tsc.2021.100849.
  • Yang W, Kit Ng DT, Su J. The impact of story-inspired programming on preschool children’s computational thinking: a multi-group experiment. Think Ski Creat. 2023;47: 101218. doi:10.1016/j.tsc.2022.101218.
  • Popat S, Starkey L. Learning to code or coding to learn? A systematic review. Comput Educ. 2019;128: 365–376. doi:10.1016/j.compedu.2018.10.005.
  • Sun L, Hu L, Zhou D. Programming attitudes predict computational thinking: analysis of differences in gender and programming experience. Comput Educ. 2022;181: 104457. doi:10.1016/j.compedu.2022.104457.
  • Rozali NF, Zaid NM, Noor NM, Ibrahim NH. Developing a unified model of teaching computational thinking. In: 2018 IEEE 10th International Conference on Engineering Education (ICEED), Kuala Lumpur, Malaysia. Malaysia: IEEE; 2018. p. 208–213. doi:10.1109/ICEED.2018.8626930.
  • Tedre M, Denning P. The long quest for computational thinking. In: 16th Koli Calling International Conference on Computing Education Research. New York, NY: ACM; 2016. p. 120–129. doi:10.1145/2999541.2999542.
  • Wing JM. Computational thinking. Commun ACM. 2006;49(3):33–35. doi:10.1145/1118178.1118215.
  • Cheng Y-P, Lai C-F, Chen Y-T, Wang W-S, Huang Y-M, Wu T-T. Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform. Comput Educ. 2023;200: 1–20. doi:10.1016/j.compedu.2023.104794.
  • Wong GKW. Amplifying children’s computational problem-solving skills: a hybrid-based design for programming education. Educ Inf Technol. 2024;29: 1761–1793. doi:10.1007/s10639-023-11880-9.
  • Kong SC. Components and methods of evaluating computational thinking for fostering creative problem-solvers in senior primary school education. In: Kong SC and Abelson H., editors.  Computational thinking education.  Singapore: Springer; 2019. p. 187–204. https://doi.org/10.1007/978-981-13-6528-7_8.
  • Resnick M, Maloney J, Monroy-Hernández A, Rusk N, Eastmond E, Brennan K, Scratch: programming for all. Commun ACM. 2009;52: 60–67. doi:10.1145/1592761.1592779.
  • Pausch R, Burnette T, Capeheart AC, Conway M, Cosgrove D, Deline R, Alice: rapid prototyping system for virtual reality. IEEE Comput Graph Appl. 1995;15: 8–11. doi:10.1109/38.376600.
  • Biju SM. Taking advantage of Alice to teach programming concepts. E-Learning Digital Media. 2013;10: 22–29. doi:10.2304/elea.2013.10.1.22.
  • Dwarika J, Ruth de Villiers MR. Use of the Alice visual environment in teaching and learning object-oriented programming. In: Proceedings of the 2015 Annual Research Conference on South African Institute of Computer Scientists and Information Technologists. New York, USA: Association for Computing Machinery; 2015. p. 1–14. Article 14. doi:10.1145/2815782.2815815.
  • Yusuf A, Noor NM. Research trend on learning computer programming with program animation: a systematic mapping study. Comput Appl Eng Educ. 2023b;31(6):1552–1582. doi:10.1002/cae.22659.
  • Sweller J, Ayres P, Kalyuga S. Cognitive load theory. New York: Springer; 2011.
  • Awasekar DD. Effect of program visualization to teach computer programming in a resource constrained classroom. In: IEEE Fifth International Conference on Technology for Education. Kharagpur: IEEE; 2013. p. 93–100. doi:10.1109/T4E.2013.31.
  • Meerbaum-Salant O, Armoni M, Ben-Ari M. Learning computer science concepts with Scratch. Comput Sci Educ. 2013;23: 239–264. doi:10.1080/08993408.2013.832022.
  • Aysolmaz B, Reijers HA. Animation as a dynamic visualization technique for improving process model comprehension. Inf Manag. 2021;58(5):103478. doi:10.1016/j.im.2021.103478.
  • Kalyuga S. Relative effectiveness of animated and static diagrams: an effect of learner prior knowledge. Comput Human Behav. 2008;24(3):852–861. doi:10.1016/j.chb.2007.02.018.
  • Montuori C, Ronconi L, Vardanega T, Arfe B. Exploring gender differences in coding at the beginning of primary school. Front Psychol. 2022;13: 887280. doi:10.3389/fpsyg.2022.887280.
  • Roman-Gonzalez M, Perez-Gonzalez J-C, Jimenez-Fernandez C. Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Comput Human Behav. 2017;72: 678–691. doi:10.1016/j.chb.2016.08.047.
  • Price CB, Price-Mohr R. Exploring gender differences in primary school computer programming classes: a study in an English state-funded urban school. Int J Primary, Elementary Early Years Educ. 2023;51(2):306–319. doi:10.1080/03004279.2021.1971274.
  • Bers MU, Flennery L, Kazakoff ER, Sullivan A. Computational thinking and tinkering: exploration of an early childhood robotics curriculum. Comput Educ. 2014;72: 145–157. doi:10.1016/j.compedu.2013.10.020.
  • Namli NA, Aybek B. An investigation of the effect of block-based programming and unplugged coding activities on fifth graders’ computational thinking skills, self-efficacy and academic performance. Contemp Educ Technol. 2022;14(1):ep341. doi:10.30935/cedtech/11477.
  • Ou Yang F-C, Lai H-M, Wang Y-W. Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Comput Educ. 2023;195: 1–22. doi:10.1016/j.compedu.2022.104721.
  • SunD, OuyangF, LiY and ZhuC. Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education. Int J STEM Edu. 2021;8: 54. doi:10.1186/s40594-021-00311-1.
  • Agbo FJ, Okpanachi LO, Ocheja P, Oyelere SS, Sani G. How can unplugged approach facilitate novice students’ understanding of computational thinking? An exploratory study from a Nigerian university. Think Ski Creat. 2024;51: 101458. doi:10.1016/j.tsc.2023.101458.
  • Wing JM. Research notebook: computational thinking – what and why? The link. The magazine of the Carnegie Mellon University School of Computer Science [Internet]; 2011. Available from: http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why.
  • Aho AV. Computation and computational thinking. Comput J. 2012;55(7):832–835. doi:10.1093/comjnl/bxs074.
  • Yadav A, Hong H, Stephenson C. Computational thinking for all: pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. Tech Trends. 2016;60: 565–568. doi:10.1007/s11528-016-0087-7.
  • FagerlundJ, HakkinenP, VesisenahoM and ViiriJ. Computational thinking in programming with Scratch in primary schools: A systematic review. Comput  Appl Eng Edu. 2021;29(1):12–28. doi:10.1002/cae.22255.
  • Brennan K, Resnick M. New frameworks for studying and assessing the development of computational thinking. In: Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vancouver, Canada, vol. 1, Canada: Scientific Research Publishing; 2012. 25 p.
  • Repenning A, Basawapatna A, Escherle N. Computational thinking tools. In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Cambridge, UK. Cambridge: IEEE; 2016. p. 218–222. doi:10.1109/VLHCC.2016.7739688.
  • Shute VJ, Sun C, Asbell-Clarke J. Demystifying computational thinking. Educ Res Rev. 2017;22: 142–158. doi:10.1016/j.edurev.2017.09.003.
  • Korkmaz O, Cakir R, Ozden MY. A validity and reliability study of the computational thinking scales (CTS). Comput Human Behav. 2017;72: 558–569. doi:10.1016/j.chb.2017.01.005.
  • Doleck T, Bazelais P, Lemay D, Saxena A, Basnet R. Algorithmic thinking, cooperativity, creativity, critical thinking, problem solving: exploring the relationship between computational thinking and academic performance. J Comput Educ. 2017;4(4):355–369. doi:10.1007/s40692-017-0090-9.
  • Çakiroğlu Ü, Çevik İ. A framework for measuring abstraction as a sub-skill of computational thinking in block-based programming environments. Educ Technol Soc. 2022;27: 9455–9484. doi:10.1007/s10639-022-11019-2.
  • Werner L, Denner J, Campe S, Kawamoto DC. The fairy performance assessment: measuring computational thinking in middle school. In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education. Raleigh, NC: ACM; 2012. p. 215–220. doi:10.1145/2157136.2157200.
  • Chen G, Shen J, Barth-Cohen L, Jiang S, Huang X, Eltoukhy M. Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Comput Educ. 2017;109: 162–175.
  • Guggemos J, Seufert S, Román-González M. Computational thinking assessment – towards more vivid interpretations. Technol Knowl Learn. 2023;28: 539–568. doi:10.1007/s10758-021-09587-2.
  • Roman-Gonzalez M. Computational thinking test: design guidelines and content validation. In: Proceedings of EDULEARN15 Conference 6th–8th July 2015, Barcelona, Spain. IATED; 2015. Available from: https://library.iated.org/view/ROMANGONZALEZ2015COM.
  • Moon H, Cheon J, Kwon K. Difficult concepts and practices of computational thinking using block-based programming. Int J Comput Sci Educ Schools. 2022;5(3):3–16. doi:10.21585/ijcses.v5i3.129.
  • Chen X, Wang X. Computational thinking training and deep learning evaluation model construction based on Scratch modular programming course. Comput Intell Neurosci. 2023;2023: 3760957. doi:10.1155/2023/3760957.
  • GuggemosJ, SeufertS and Román-GonzálezM. Computational Thinking Assessment – Towards more vivid interpretations. Technol Knowled Learning. 2023;28:539–568. doi: 10.1007/s10758-021-09587-2.
  • Román-GonzálezM., Moreno-LeónJ and RoblesG. Combining assessment tools for a comprehensive evaluation of Computational Thinking interventions. In: KongS-C and AbelsonH., editors. Computational thinking education.  Springer; 2019. p. 79–98.
  • Chan S-W, Looi C-K, Sumintono B. Assessing computational thinking abilities among Singapore secondary students: a Rasch model measurement analysis. J Comput Educ. 2021;8: 213–236. doi:10.1007/s40692-020-00177-2.
  • Hsu T-C, Chang C, Lin Y-W. Effects of voice assistant creation using different learning approaches on performance of computational thinking. Comput Educ. 2023;192: 104657. doi:10.1016/j.compedu.2022.104657.
  • Kong S-C, Lai M. Effects of a teacher development program on teachers’ knowledge and collaborative engagement, and students’ achievement in computational thinking concepts. Br J Educ Technol. 2023;54(4):489–512. doi:10.1111/bjet.13256.
  • WangX, ChengM and LiX. Teaching and learning computational thinking through game-based learning: A systematic review. J Educ Comput Res. 2023;61(7):1505–1536. doi: 10.1177/07356331231180951.
  • SentanceS and CsizmadiaA. Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies. 2017;22(2):469–495. doi: 10.1007/s10639-016-9482-0.
  • CzerkawskiBC and LymanEW. Exploring issues about computational thinking in higher education.Tech Trends. 2015;59(2):57–65. doi: 10.1007/s11528-015-0840-3.
  • Corral L, Fronza I, Pahl C. Block-based programming enabling students to gain and transfer knowledge with a no-code approach. In: Proceedings of the 22st Annual Conference on Information Technology Education (SIGITE 21). NY: Association for Computing Machinery; 2021. p. 55–56. doi:10.1145/3450329.3478314.
  • Kumar P, Saxena C, Baber H. Learner–content interaction in e-learning – The moderating role of perceived harm of COVID-19 in assessing the satisfaction of learners. Smart Learn Environ. 2021;8: 5. doi:10.1186/s40561-021-00149-8.
  • Moore MG. Editorial: three types of interaction. Am J Distance Educ. 1989;3(2):1–7. doi:10.1080/08923648909526659.
  • Goldberg P, Wanger W, Seidel T, Sturmer K. Why do students exhibit different attention-related behavior during instruction? Investigating effects of individual and context-dependent determinants. Learn Instruct. 2023;83: 1016694. doi:10.1016/j.learninstruc.2022.101694.
  • Hopcan S, Polat E, Albayrak E. Collaborative behavior patterns of students in programming instruction. J Educ Comput Res. 2022;60(4):1035–1062. doi:10.1177/07356331211062260.
  • Olsson J, Granberg C. Teacher–student interaction supporting students’ creative mathematical reasoning during problem-solving using Scratch. Math Think Learn. 2022;26(3):278–305. doi:10.1080/10986065.2022.2105567.
  • Pellas N. Exploring relationships among students’ computational thinking skills, emotions, and cognitive load using simulation games in primary education. J Comput Assist Learn. 2023;39(5):1576–1590. doi:10.1111/jcal.12819.
  • Chikha AB, Khacharem A, Trabelsi K, Bragazzi NL. The effect of spatial ability in learning from static and dynamic visualizations: a moderation analysis in 6-year-old children. Front Psychol. 2021;12: 583968. doi:10.3389/fpsyg.2021.583968.
  • Höffler TN. Spatial ability: its influence on learning with visualizations – a meta-analytic review. Educ Psychol Rev. 2010;22: 245–269. doi:10.1007/s10648-010-9126-7.
  • Höffler TN, Leutner D. The role of spatial ability in learning from instructional animations – evidence for an ability-as-compensator hypothesis. Comput Human Behav. 2011;27(1):209–216. doi:10.1016/j.chb.2010.07.042.
  • Huk T. Who benefits from learning with 3D models? The case of spatial ability. J Comput Assist Learn. 2006;22(6):392–404. doi:10.1111/j.1365-2729.2006.00180.x.
  • Al-Linjawi AA, Al-Nuaim HA. Using Alice to teach novice programmers OOP concepts. J King Abdulaziz Univ. 2010;22: 59–68. doi:10.4197/Sci.22-1.4.
  • Niousha R, Saito D, Washizaki H, Fukazawa Y. Investigating the effect of binary gender preferences on computational thinking skills. Educ Sci. 2023;13: 433. doi:10.3390/educsci13050433.
  • StatterD and ArmoniM. Learning abstraction in computer science: A gender perspective.  Proceedings of the 12th Workshop on Primary and Secondary Computing Education (WiPSCE '17); 2017. p. 5–14. doi: 10.1145/3137065.3137081.
  • Oluk A, Korkmaz O. Comparing students’ scratch skills with their computational thinking skills in terms of different variables. Int J Modern Educ Comput Sci. 2016;8(11):1–7. doi:10.5815/ijmecs.2016.11.01.
  • PriceCB and Price-MohrR. Exploring gender differences in primary school computer programming classes: A study in an English state-funded urban school. Int J Primary Element Early Years Edu. 2021;51(2):306–319. doi: 10.1080/03004279.2021.1971274.
  • Andrade A, Delandshere G, Danish JA. Using multimodal learning analytics to model student behaviour: a systematic analysis of behavioural framing. J Learn Anal. 2016;3(2):282–306. doi:10.18608/jla.2016.32.14.
  • Yusuf A, Noor NM, Bello S. Using learning analytics to model students’ learning behavior in animated programming classroom. Educ Inf Technol. 2023;29: 6947–6990. doi:10.1007/s10639-023-12079-8.
  • Creswell JW. Research design: qualitative, quantitative and mixed method approaches. 4th ed.Thousand Oaks: Sage Publications; 2014.
  • Molina-Ayuso A, Adamuz-Povedano N, Bracho-Lopez R, Torralbo-Rodriguez M. Introduction to computational thinking with Scratch for teacher training for Spanish primary school teachers in Mathematics. Educ Sci. 2022;12: 899. doi:10.3390/educsci12120899.
  • Kalyuga S, Chandler P, Sweller J. Managing split-attention and redundancy in multimedia instruction. Appl Cogn Psychol. 1999;13: 351–371. doi:10.1002/(SICI)1099-0720(199908)13:4 <351::AID-ACP589 >3.0.CO;2-6.
  • Paas F. Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive load approach. J Educ Psychol. 1992;84: 429–434. doi:10.1037/0022-0663.84.4.429.
  • Paas F, Tuovinen J, Tabbers HK, Van Gerven PWM. Cognitive load measurement as a means to advance cognitive load theory. Educ Psychol. 2003;38: 63–71. doi:10.1207/S15326985EP3801_8.
  • Ekstrom RB, French JW, Harmann HH. Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service; 1976.
  • Kesselbacher M, Bollin A. Quantifying patterns and programming strategies in block-based programming environments. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Montreal, QC, Canada. Montreal: IEEE; 2019. p. 254–255. doi:10.1109/ICSE-Companion.2019.00101.
  • Obermuller F, Pernerstorfer R, Bailey L, Heuer U, Fraser G. Common patterns in block-based robot programs. In: Proceedings of the 17th Workshop in Primary and Secondary Computing Education. New York: Association for Computing Machinery; 2022. p. 1–10. Article No. 4. doi:10.1145/3556787.3556859.
  • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20: 37–46. doi:10.1177/001316446002000104.
  • Chen X, Feng S. Exploring the relationships between social presence and teaching presence in online video-based learning. J Comput Assist Learn. 2023;2023: 3760957. doi:10.1111/jcal.12843.
  • Praetorius A-K, Klieme E, Herbert B, Pinger P. Generic dimensions of teaching quality: the German framework of three basic dimensions. ZDM Math Educ. 2018;50(3):407–426. doi:10.1007/s11858-018-0918-4.
  • Scherer R, Nilsen T, Jansen M. Evaluating individual students’ perceptions of instructional quality: an investigation of their factor structure, measurement invariance, and relations to educational outcomes. Front Psychol. 2016;7: 110. doi:10.3389/fpsyg.2016.00110.
  • Iskrenovic-Momcilovic O. Pair programming with scratch. Educ Inform Technol. 2019;24: 2943–2952. doi:10.1007/s10639-019-09905-3.
  • Andersen R, Mørch AI, Torine Litherland K. Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education. Behav Inf Technol. 2022;41(9):1830–1847. doi:10.1080/0144929X.2022.2083981.
  • Shubina I, Kulakli A. Critical thinking, creativity and gender differences for knowledge generation in education. Read Writ Q. 2019;10(1):3086–3093. doi:10.20533/licej.2040.2589.2019.0405.
  • Matud P, Rodriguez C, Grande J. Gender differences in creative thinking. Pers Individ Differ. 2007;43(5):1137–1147. doi:10.1016/j.paid.2007.03.006.
  • Espino EE, Gonzalez CG. Gender and computational thinking: review of the literature and applications. In: Proceedings of the XVII International Conference on Human–Computer Interaction. New York: Association for Computing Machinery; 2016. p. 1–2. Article No. 46. doi:10.1145/2998626.2998665.
  • Jiang B, Li Z. Effect of scratch on computational thinking skills of Chinese primary school students. J Comput Educ. 2021;8: 505–525. doi:10.1007/s40692-021-00190-z.
  • Yucel Y, Rizvanoglu K. Battling gender stereotypes: a user study of a code-learning game, “Code Combat,” with middle school children. Comput Human Behav. 2019;99: 352–365. doi:10.1016/j.chb.2019.05.029.
  • Kožuh I, Krajnc R, Hadjileontiadis LJ, Debevc M. Assessment of problem-solving ability in novice programmers. PLoS ONE. 2018;13: e0201919. doi:10.1371/journal.pone.0201919.
  • Sun L, Hu L, Zhou D. Improving 7th-graders’ computational thinking skills through unplugged programming activities: a study on the influence of multiple factors. Think Ski Creat. 2021;42: 100926. doi:10.1016/j.tsc.2021.100926.
  • Jule A. Gender theory. In: Michalos AC , editor. Encyclopedia of quality of life and well-being research. Dordrecht: Springer; 2014. p. 2464–2466. doi:10.1007/978-94-007-0753-5_1137.
  • Statista . Number of undergraduate students at universities in Nigeria as of 2019, by gender and discipline [Internet]; 2021. Available from: https://www.statista.com/statistics/1262928/number-of-undergraduate-students-at-universities-in-nigeria-by-gender-and-discipline/.
  • SpanjersIAE, van GogT and van MerriënboerJJG. Segmentation of worked examples: Effects on cognitive load and learning. Appl Cognitive Psychol. 2011;26(3):353–358. doi: 10.1002/acp.1832
  • Kalyuga S, Ayres P, Chandler P, Sweller J. The expertise reversal effect. Educ Psychol. 2003;38(1):23–31. doi:10.1207/S15326985EP3801_4.