E.T.S. DE INGENIERÍA INFORMÁTICA
Centre
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
Madrid, EspañaPublicacions en col·laboració amb investigadors/es de Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (129)
2024
-
A Machine Learning Approach to Predict Radiation Effects in Microelectronic Components
Sensors, Vol. 24, Núm. 13
-
Advancing MARFE detection in JET's operational camera videos through Machine Learning techniques
Fusion Engineering and Design, Vol. 205
-
Deep Learning Models to Reduce Stray Light in TJ-II Thomson Scattering Diagnostic
Sensors, Vol. 24, Núm. 9
-
Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry
Astronomy and Astrophysics, Vol. 686
-
Overview of T and D-T results in JET with ITER-like wall
Nuclear Fusion, Vol. 64, Núm. 11
-
Real-time disruption prediction in multi-dimensional spaces leveraging diagnostic information not available at execution time
Nuclear Fusion, Vol. 64, Núm. 4
2023
-
A programmable web platform for distributed access, analysis, and visualization of data
Fusion Engineering and Design, Vol. 197
2022
-
Disruption prediction with artificial intelligence techniques in tokamak plasmas
Nature Physics, Vol. 18, Núm. 7, pp. 741-750
-
Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions
Nature Physics, Vol. 18, Núm. 7, pp. 776-782
-
Frontiers in data analysis methods: From causality detection to data driven experimental design
Plasma Physics and Controlled Fusion, Vol. 64, Núm. 2
-
Overview of JET results for optimising ITER operation
Nuclear Fusion, Vol. 62, Núm. 4
-
Performance Analysis of the Centroid Method Predictor Implemented in the JET Real Time Network
Plasma Physics and Controlled Fusion, Vol. 64, Núm. 11
2021
-
Nuclear Fusion Pattern Recognition by Ensemble Learning
Complexity, Vol. 2021
2020
-
A linear equation based on signal increments to predict disruptive behaviours and the time to disruption on jet
Nuclear Fusion, Vol. 60, Núm. 2
-
Automatic Recognition of Anomalous Patterns in Discharges by Applying Deep Learning
Fusion Science and Technology, Vol. 76, Núm. 8, pp. 925-932
-
Automatic recognition of anomalous patterns in discharges by recurrent neural networks
Fusion Engineering and Design, Vol. 154
-
Automatic recognition of plasma relevant events: Implications for ITER
Fusion Engineering and Design, Vol. 156
-
Global scaling of the heat transport in fusion plasmas
Physical Review Research, Vol. 2, Núm. 1
2019
-
Assessment of linear disruption predictors using JT-60U data
Fusion Engineering and Design, Vol. 146, pp. 1291-1294
-
Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET
Nuclear Fusion, Vol. 59, Núm. 1