Topología de las gráficas en espacios de funciones continuas

  1. Serrano Pascual, Feliciana
unter der Leitung von:
  1. Enrique Outerelo Domínguez Doktorvater/Doktormutter

Universität der Verteidigung: Universidad Complutense de Madrid

Jahr der Verteidigung: 1987

Gericht:
  1. Joaquín Arregui Fernández Präsident/in
  2. José María Sánchez Abril Sekretär/in
  3. Fernando Bombal Gordón Vocal
  4. Emilio Bujalance García Vocal
  5. Juan Fontanillas Royes Vocal

Art: Dissertation

Zusammenfassung

SE ESTUDIA LA TOPOLOGIA DE LAS GRAFICAS EN ESPACIOS DE FUNCIONES CONTINUAS, EN PRIMER LUGAR LAS BASES PROPIEDADES DE METRIZACION Y COMPARACION CON LA TOPOLOGIA FINA Y DE CERF. EN LOS AXIOMAS DE SEPARACION SE DEDICA ESPECIAL ATENCION A LA NORMALIDAD Y SE PRUEBA QUE SI X ES UNA VARIEDAD METRIZABLE DE DIMENSION FINITA Y QUE POSEE UN ARCO EL ESPACIO C(X.I) CON LA TOPOLOGIA DE LAS GRAFICAS NO ES NORMAL. LA CONTINUIDAD DE LA COMPOSICION ES ESTUDIADA EN EL TERCER CAPITULO ASI COMO LA CONTINUIDAD DEL PRODUCTO DE APLICACIONES. FINALMENTE SE ESTUDIA LA LEY EXPONENCIAL Y SE RESUELVE EL PROBLEMA DE EN QUE CONDICIONES CW(XXY Z) ES HORMEONAFO A CW(X CX(Y Z)).